首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied spatial variation in abundance of marine benthic and pelagic heterotrophic nanoflagellates in relation to abundances of autotrophic flagellates, bacteria and cyanobacteria in an upwelling area off the Banc d'Arguin, Mauritania.There was enormous spatial variation in densities. In the sediments these ranged from 8–219 × 103 cm–3 for heterotrophic flagellates. Maximum values are in the range of those for temperate shallow marine bottoms. Low densities (< 20 × 103) were confined to the deep stations (> 1000 m). Over the shelf (10–100 m depth) densities were high but related to grain size rather than to concurrent upwelling phenomena or to the abundance of benthic macrofauna.Pelagic flagellate abundance appeared to be more indicative of contemporary hydrographic conditions, most obvious by an increase in the ratio heterotrophic/autotrophic nanoflagellates away from the area of most intense upwelling.  相似文献   

2.
Microbial food web in a large shallow lake (Lake Balaton, Hungary)   总被引:2,自引:2,他引:0  
Seasonal variations of phyto-, bacterio- and colourless flagellate plankton were followed across a year in the large shallow Lake Balaton (Hungary). Yearly average chlorophyll-a concentration was 11 µg 1–1, while the corresponding values of bacterioplankton and heterotrophic nanoflagellate (HNF) plankton biomass (fresh weight) were 0.24 mg 1–1 and 0.35 mg 1–1, respectively. About half of planktonic primary production was channelled through bacterioplankton on the yearly basis. However, there was no significant correlation between phytoplankton biomass and bacterial abundance. Bacterial specific growth rates were in the range of 0.009 and 0.09 h–1, and ended to follow the seasonal changes in water temperature. In some periods of the year, predator-prey relationships between the HNF and bacterial abundance were obvious. The estimated HNF grazing on bacteria varied between 3% and 227% of the daily bacterial production. On an annual basis, 87% of bacterial cell production was grazed by HNF plankton.  相似文献   

3.
The effect of initial inoculum density of the antagonistic bacterial strains Pseudomonas fluorescens B5 and Pseudomonas corrugata 2140 (103 to 108 CFU per seed pellet) on sugar beet seedling colonisation, in situ bioluminescence and antagonistic activity towards Pythium ultimum was investigated. Populations of the bacteria colonising sugar beet root systems approached an apparent carrying capacity of 105 to 106 CFU per plant after 12 d growth, irrespective of inoculum density. This meant an up to 320-fold population increase at low inoculum densities and a decrease at high densities. Population densities of both bacteria and their corresponding in situ bioluminescence (resulting from luciferase enzyme expression from the inserted luxAB genes) reached highest levels in the hypocotyl region and in the upper root region 0–20 mm below seed level (104–106 CFU/cm section, 101–103 RLU/cm section) and decreased with root depth. In situ bioluminescence, which indicates physiological activity, was measurable at lowest antagonist initial inoculum density (103 CFU per seed pellet) and did not increase significantly with increasing inoculum density. Bioluminescence was also significantly correlated with population density. For Pseudomonas fluorescens B5, the total population size per plant and downward colonisation of the root (below 40 mm depth) increased significantly with antagonist inoculum density applied to the seeds. For Pseudomonas corrugata 2140, no significant influence of initial inoculum density on root colonisation was observable. Survival and dry weight of sugar beet seedlings in Pythium infested soil increased significantly with increasing inoculum density of Pseudomonas fluorescens B5, whereas for Pseudomonas corrugata 2140, initial densities of 104 to 106 CFU per seed resulted in maximal survival of plants.  相似文献   

4.
Bacterial productivity and microbial biomass in tropical mangrove sediments   总被引:14,自引:0,他引:14  
Bacterial productivity (3H-thymidine incorporation into DNA) and intertidal microbenthic communities were examined within five mangrove estuaries along the tropical northeastern coast of Australia. Bacteria in mangrove surface sediments (0–2 cm depth) were enumerated by epifluorescence microscopy and were more abundant (mean and range: 1.1(0.02–3.6)×1011 cells·g DW–1) and productive (mean: 1.6 gC·m–2· d–1) compared to bacterial populations in most other benthic environments. Specific growth rates (¯x=1.1) ranged from 0.2–5.5 d–1, with highest rates of growth in austral spring and summer. Highest bacterial numbers occurred in winter (June–August) in estuaries along the Cape York peninsula north of Hinchinbrook Island and were significantly different among intertidal zones and estuaries. Protozoa (105–106·m–2, pheopigments (0.0–24.1g·gDW–1) and bacterial productivity (0.2–5.1 gC·m–2·d–1) exhibited significant seasonality with maximum densities and production in austral spring and summer. Algal biomass (chlorophylla) was low (mean: 1.6g·gDW–1) compared to other intertidal sediments because of low light intensity under the dense forest canopy, especially in the mid-intertidal zone. Partial correlation analysis and a study of possible tidal effects suggest that microbial biomass and bacterial growth in tropical intertidal sediments are regulated primarily by physicochemical factors and by tidal flushing and exposure. High microbial biomass and very high rates of bacterial productivity coupled with low densities of meiofaunal and macroinfaunal consumers observed in earlier studies suggest that microbes may be a sink for carbon in intertidal sediments of tropical mangrove estuaries.  相似文献   

5.
In three intertidal sand bottom communities of the Königshafen (Island of Sylt, North Sea), the biomass production and respiration of phytobenthos, phytoplankton, macrozoobenthos, and in situ community metabolism were measured monthly during 1980. The study sites were characterized by different communities (Nereis-Corophium-belt, seagrass-bed,Arenicola-flat) and by a high abundance of the molluscHydrobia ulvae. Benthic diatoms are the major constituents of plant biomass in theArenicola-flat. In this community, gross primary productivity amounts to 148 g C m–2 a–1. 82 % of this productivity is caused by microbenthos, whereas phytoplankton constitutes only 18 %. In the seagrass-bed, gross primary productivity amounts to 473 g C m–2 a–1. 79 % of this is generated by seagrass and its epiphytes, whereas microphytobenthos contributes 19 %. In theNereis-Corophium-belt, only microphytobenthos is important for biomass and primary productivity (gross: 152 g C m–2 a–1). Annual production of macrofauna proved to be similar in theArenicola-flat (30 g C m–2 a–1) to that in the seagrass-bed (29 g C m–2 a–1). Only one third of this amount is produced in theNereis-Corophium-belt (10 g C m–2 a–1). The main part of secondary production and animal respiration is contributed by grazingH. ulvae. In the seagrass-bed, 83 % of the energy used for production is obtained from the grazing food chain. In theArenicola-flat and theNereis-Corophium-belt, the importance of non-grazing species is greater. A synchrony of seasonal development of plant biomass and monthly secondary production was observed. In theArenicola-flat and the seagrass-bed, where density and production of macrofauna are high, a conspicuous decrease in biomass of microbenthos occurs during the warmer season, whereas in theNereis-Corophium-belt primary production causes an increase in microphytobenthic biomass in summer and autumn. Energy flow through the macrofauna amounts to 69 g C m–2 a–1 in theArenicola-flat, 85 g C m–2 a–1 in the seagrass-bed and 35 g C m–2 a–1 in theNereis-Corophium-belt. Based on the assumption that sources of food are used in proportion to their availability, 49 g C m–2 a–1 (Arenicola-flat), 72 g C m–2 a–1 (seagrass-bed) and 26 g C m–2 a–1 (Nereis-Corophium-belt) are estimated as taken up by the grazing food chain. All three subsystems are able to support the energy requirements from their own primary production and are not dependent on energy import from adjacent ecosystems.  相似文献   

6.
Rhodobacter sphaeroides RV cultivation and hydrogen production were studied in a one- and two-stage chemostat using lactic acid as substrate. Light saturation was observed when light intensities equal to or above 10 klx were applied. Under light saturation, the two-stage chemostat appeared to be very effective for hydrogen production, allowing complete nitrogen removal by bacterial growth in the first reactor. The hydrogen evolution rate in the second reactor was up to 75 ml H2 (g dry weight)–1 h–1. Accumulation of storage material was observed in the second reactor of the two-stage chemostat under a large carbon excess and limiting light irradiance. The optimal hydraulic residence time was 15 h for both stages, leading to a total hydrogen production about 40% higher than in the one-stage chemostat. Under increasing influent ammonium and yeast extract concentrations, opposite trends of decreasing bacterial activity and increasing concentration resulted in a linear increase of the overall hydrogen production to 1.4–1.6lH2 (l reactor)–1 day–1. Hydrogen production quickly fell when nitrogen was not completely metabolised. The hydrogen evolution rate was also found to depend on lactic acid concentration, and maximum bacterial activity was observed at 100 mM influent lactic acid.  相似文献   

7.
The meiobenthos of five mangrove vegetation types in Gazi Bay,Kenya   总被引:1,自引:0,他引:1  
The vertical distribution of meiofauna in the sediments ofAvicennia marina,Bruguiera gymnorrhiza,Ceriops tagal,Rhizophora mucronata andSonneratia alba at Gazi Bay (Kenya), is described. Seventeen taxa were observed, with highest densities in the sediments ofBruguiera (6707 ind. 10 cm–2), followed byRhizophora (3998 ind. 10 cm–2),Avicennia (3442 ind. 10 cm–2),Sonneratia (2889 ind. 10 cm–2) andCeriops (1976 ind. 10 cm–2). Nematodes accounted for up to 95% of total densities; other common taxa were copepods, turbellarians, oligochaetes, polychaetes, ostracods and rotifers. High densities occurred to about 20 cm depth in the sediment. EspeciallyCeriops sediments show still high densities of nematodes (342 ind. 10 cm–2) and copepods (11 ind. 10 cm–2) in the deepest layer (15–22 cm). Particle size and oxygen conditions were major factors influencing meiobenthic distribution;Uca burrows had a major impact on distribution and abundance of meiofauna.  相似文献   

8.
Summary We report the recovery of root nodules from P. glandulosa var. glandulosa in the eastern portion of its range, where the species reaches its greatest vegetational development. Single cores 4.7 cm in diameter and up to 250 cm deep yielded from 0 to over 250 nodules. Nodules were found at all depths below 10 cm, with the highest concentration often around 100 cm. Detailed studies of three trees revealed relatively small volume densities of about 0.02 nodules cm–3, high surface area densities of 2–4 nodules cm–2, and high nodule biomass of 8–23 g m–2, when compared to cultivated legumes. Nodules are small, weakly attached to roots that are seldom over 0.5 mm in diameter, and not easily observed under field conditions. No nodules were recovered from cores from the more arid western portion of P.glandulosa's range, although seedlings nodulated readily in these soils in the glasshouse as well as in most unamended soils from throughout mesquite's geographical range. Local differences in nodulating potential of soils included a negative association with mesquite canopies and a positive association with depth. These results suggest a significant role for biological fixation in the nitrogen regime and vegetation dynamics of Prosopis-dominated ecosystems.  相似文献   

9.
Peak pore water SRP and iron(II) concentrations were found during summer in surface sediments in the shallow and eutrophic L. Finjasjön, Sweden, and the concentrations generally increased with water depth. The SRP variation in surface sediments (0–2 cm) was correlated with temperature (R2 = 0.82–0.95) and iron(II) showed a correlation with sedimentary carbon on all sites (R2 = 0.42–0.96). In addition, sedimentary Chla, bacterial abundances and production rates in surface sediments (0–2 cm) varied seasonally, with peaks during spring and fall sedimentation. Bacterial production rates were correlated with phosphorus and carbon in the sediment (R2 = 0.90–0.95 and R2 = 0.31–0.95, respectively), indicating a coupling with algal sedimentation. A general increase in sediment Chla and bacterial abundances towards sediments at greater water depth was found. Further, data from 1988–90 reveal that TP and TFe concentrations in the lake were significantly correlated during summer (R2 = 0.81 and 0.76, in the hypolimnion and epilimnion, respectively). The results indicate that the increase in pore water SRP and Fe(II) in surface sediments during summer is regulated by bacterial activity and the input of organic matter. In addition, spatial and temporal variations in pore water composition are mainly influenced by temperature and water depth and the significant correlation between TP and TFe in the water suggests a coupled release from the sediment. These findings support the theory of anoxic microlayer formation at the sediment-water interface.  相似文献   

10.
Summary The anaerobic degradation of p-cresol under denitrifying conditions by a bacterial consortium was studied in batch and continuous cultures. Concentrations up to 3 mm were degraded within 5–6 days with 4-hydroxybenzyl alcohol, 4-hydroxybenzaldehyde and 4-hydroxybenzoate as intermediates. Steady states could be maintained at only one dilution rate, D=0.04 h–1. A further increase in the dilution rate to 0.0 8 h–1 resulted in culture wash-out. An estimation of the Saturation constant was made (<1 mg/l), taking the maximum specific growth rate as 0.045 h–1, thus yielding a value of 0.125 mg p-cresol/l. Correspondence to: N. Khoury  相似文献   

11.
Pishchik  V.N.  Vorobyev  N.I.  Chernyaeva  I.I.  Timofeeva  S.V.  Kozhemyakov  A.P  Alexeev  Y.V.  Lukin  S.M. 《Plant and Soil》2002,243(2):173-186
Bacterial inoculants of the commercially available plant growth promoting rhizobacteria (PGPR) Arthrobacter mysorens 7, Flavobacterium sp. L30, and Klebsiella mobilis CIAM 880 were selected to obtain ecologically safe barley crop production on cadmium (Cd) polluted soils. All the PGPR immobilized 24–68% soluble cadmium from soil suspension. A. mysorens 7 and K. mobilis CIAM 880 were highly resistant to Cd and grew in up to 1 and 3 mmol CdCl2 on DAS medium respectively. All PGPR were able to fix nitrogen (276–1014 nmol mg–1 bacterial DW) and to produce indole acetic acid (IAA) (126–330 nmol mg–1 bacterial DW) or ethylene (4.6–13.5 nmol bacterial DW). All the PGPR actively colonized barley root system and rhizosphere and significantly stimulated root elongation of barley seedlings (up to 25%), growing on soil containing 5 or 15 mg Cd kg–1 of soil. Created in the simulation mathematical model confirms our hypothesis that PGPR beneficial effect on barley growing under Cd-stress is a complex process. One of mechanisms underlying this effect might be increase of bacterial migration from rhizoplane to rhizosphere, where PGPR bind soluble free Cd ions in biologically unavailable complex forms. Among the studied PGPR K. mobilis CIAM 880 was the most effective inoculant. Inoculation with K. mobilis CIAM 880 of barley plants growing on Cd contaminated soil (5 mg Cd kg–1 of soil) under field conditions increased by 120% grain yield and 2-fold decreased Cd content in barley grain. The results suggest that the using K. mobilis CIAM 880 is an effective way to increase the plant yield on poor and polluted areas.  相似文献   

12.
Summary A method employing acid-trapping of air-purged volatiles followed by UV absorption was used to determine factors influencing the production of 2-methoxy-3-isopropylpyrazine (MIPP) by Pseudomonas perolens. MIPP in 6 abetm HCl was found to have absorption maxima at 220 nm (A + 9290 cm–1m–1) and 307 nm (A = 9370 cm–1m–1). In liquid media, the amount of recoverable MIPP was dependent on the pH of the buffer system. It varied from 50% recovery at pH 6.0 to 83% recovery at pH 9.0. From solid media, about 54% of the MIPP added was recovered by the air purge and acid trap device. Exogenous addition of valine, glycine, and methionine did not increase MIPP production suggesting that precursors are endogenous to the cell. The amount of MIPP production was influenced by the initial cell density. The highest amount of MIPP was observed at a cell density of 106 cfu/ml or less. Higher cell densities resulted in lower production. Offprint requests to: G. A. Reineccius  相似文献   

13.
Summary The influence of various tetracycline hydrochlorides (TC HC concentrations: 3,6,8 and 12 × 10–3g 1–1), on growth and protection against bacterial infections in submerged Pleurotus saca cultivation was studied. 8 × 10g 1–1 of TC HC added before the inoculation showed a reasonable protection effect, simultaneously promoting the growth of fungus. In the presence of tetracycline the lag phase was prolonged, and the final biomass production increased by 200 % on average. If the infection occurred during the cultivation process, even 12–16 × 10–3g 1–1 of added TC HC, could not prevent bacterial infection.  相似文献   

14.
Summary As a means to estimate potential oxygen consumption, profiles of elctron transport system (ETS) activity were made along three transects across the Weddell-Scotia Confluence zone (WSC) and the marginal ice zone (which overlapped in part) during the EPOS leg 2 cruise of the RV Polarstern. The integrated ETS activity between 0 and 100 m depth (referred to in situ temperatures) ranged from 261 meq (mili-electron equivalents) m–2 day–1 in the WSC to 45 meq m–2 day–1 in the southernmost stations at 62° S. The temporal changes in the overall distribution of ETS activity were small compared with the spatial variations. The main feature of the ETS activity distribution was the presence of maxima located in the WSC, coinciding with peaks of phytoplankton biomass. Different relationships between ETS and chlorophyll a concentration in these maxima appeared to be related to diatom or flagellate dominance. Vertically integrated ETS activities were significantly correlated with chlorophyll a and paniculate organic carbon concentrations, primary production and bacterial thymidine uptake.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

15.
Seasonal cycle of the microbial plankton in Crooked Lake,Antarctica   总被引:3,自引:0,他引:3  
Summary Changes in the abundance of the components of the microbial plankton between July 1990 and March 1991 in Crooked Lake, one of the largest and deepest freshwater lakes in Antarctica, are described. Chlorophyll a concentration is low (0.2–0.4g·1–1) and there is no discernable spring increase. The phytoplankton is largely dominated by flagellates. Bacterioplankton exhibits a seasonal pattern of abundance ranging from 1.0 × 108·1–1 in July to 3.25 × 108·1–1 in September. Changes in bacterial abundance probably relate to temperature and grazing by heterotrophic and mixotrophic flagellates. Total flagellated protozoan concentrations ranged between 25–136 × 102·l–1. Autotrophic and heterotrophic flagellate abundances were coupled and peaks in their abundance oscillated with peaks in bacterioplankton concentration. Four species of ciliated protozoa, dominated by oligotrichs, particularly the plastidic Strombidium, inhabit the lake. The plankton is characterised by the presence of floes which act as loci for bacteria, flagellates and amoebae and feeding sites for the ciliates and the two sparce metazoan components of the plankton. Crooked Lake is extremely oligotrophic but nonetheless supports a plankton community with a low species diversity and simple trophodynamics.  相似文献   

16.
Electric discharges between a pair of carbon electrodes were continued for 50 days in a vessel of 5 liters in volume which initially contained nitrogen at a pressure of 15 cm Hg and 200 ml of water. The pressure in the vessel was gradually increased to 60 cm Hg at the end of the run. Gas chromatographic analysis showed that the increase of the pressure mainly results from the production of hydrogen and carbon monoxide. The concentration of ammonia in the aqueous sample was increased to 0.05M in 50 days of the discharge. After hydrolysis, glycine and serine were detected at the concentrations of 3.4×10–3 M and 0.057×10–3 M in the final solution, respectively, though glycine was found only at the concentration of 6×10–6 M before hydrolysis. TLC analysis indicated the presence of hydantoic acid, N-formylglycine, diketopiperazine, and polymers of glycine.  相似文献   

17.
Summary Methionine, up to 10–3 M, added to a basal medium enhanced bacterial ethylene production in 14 of the 20 bacteria tested. The effects of substrate, cofactors, light, and temperature on ethylene production byPseudomonas solanacearum #25 revealed that the greatest effect occurred when 10–5 M methionine and 10–4 M FMN were combined, from which 4.10l/l of ethylene were produced. Higher levels of methionine resulted in production of high levels of non-enzymically produced ethylene and death of the bacteria. This non-enzymic production of ethylene was eliminated in the dark. Copper had no effect upon ethylene production. Twenty-nine and 35°C were inhibitory, whereas 19°C appeared to be near optimum for ethylene production.Pseudomonas solanacaerum #25 and some other bacteria are capable of ethylene production and methionine and FMN enhance this production.This work was supported by the Fred C. Gloeckner Foundation and the University of Minnesota Graduate School Grant in Aid #496-0307-4909-02.  相似文献   

18.
Almeida  M.A.  Cunha  M.A.  Alcântara  F. 《Hydrobiologia》2002,(1):251-262
We intended to evaluate the relative contribution of primary production versus allochthonous carbon in the production of bacterial biomass in a mesotrophic estuary. Different spatial and temporal ranges were observed in the values of bacterioplankton biomass (31–273 g C l–1) and production (0.1–16.0 g C l–1 h–1, 1.5–36.8 mg C m–2 h–1) as well as in phytoplankton abundance (50–1700 g C l–1) and primary production (0.1–512.9 g C l–1 h–1, 1.5–512.9 mg C m–2 h–1). Bacterial specific growth rate (0.10–1.68 d–1) during the year did not fluctuate as much as phytoplankton specific growth rate (0.02–0.74 d–1). Along the salinity gradient and towards the inner estuary, bacterio- and phytoplankton biomass and production increased steadily both in the warm and cold seasons. The maximum geographical increase observed in these variables was 12 times more for the bacterial community and 8 times more for the phytoplankton community. The warm to cold season ratios of the biological variables varied geographically and according to these variables. The increase at the warm season achieved its maximum in the biomass production, particularly in the marine zone and at high tide (20 and 112 times higher in bacterial and phytoplankton production, respectively). The seasonal variation in specific growth rate was most noticeable in phytoplankton, with seasonal ratios of 3–26. The bacterial community of the marine zone responded positively – generating seasonal ratios of 1–13 in bacterial specific growth rate – to the strong warm season increment in phytoplankton growth rate in this zone. In the brackish water zone where even during the warm season allochthonous carbon accounted for 41% (on average) of the bacterial carbon demand, the seasonal ratio of bacterial specific growth rate varied from about 1 to 2. During the warm season, an average of 21% of the primary production was potentially sufficient to support the whole bacterial production. During the cold months, however, the total primary production would be either required or even insufficient to support bacterial production. The estuary turned then into a mostly heterotrophic system. However, the calculated annual production of biomass by bacterio- and phytoplankton in the whole ecosystem showed that auto- and heterotrophic production was balanced in this estuary.  相似文献   

19.
Growth rates of the entire phytoplankton community of a brackish lagoon in northeastern Japan were estimated by measuring increasing chlorophyll a content in dialysis bags during the summer and early autumn of 1986. The chlorophyll a contents of lagoon water fluctuated between 20 and 200 mg m–3. At lower densities of phytoplankton (20–50 mg chl. a m–3), growth rates (the rate of increase of chlorophyll a) exceeded 1 turnover per day, while at higher densities (more than 50 mg chl. a m–3), the growth rate decreased rapidly. Tidal exchanges of chlorophyll a showed net exports of chlorophyll a from the lagoon to adjacent waters. The exchange rate of chlorophyll a was estimated to be 0.65 d–1. At about 140 mg m–3 of chlorophyll a concentration, the increase of chlorophyll in the lagoon water compensated for tidal export. Only a small proportion of primary production was consumed by zooplankton in the lagoon. There were also net exports of ammonium and phosphate from the lagoon. Nutrient flux from sediment exceeded the phytoplankton requirement and was the major source of the ammonium and phosphate exports from the lagoon. The low inorganic N/P atom supply ratio in the lagoon suggests that nitrogen is a major nutrient limiting phytoplankton growth.  相似文献   

20.
Field studies to examine the in situ assimilation and production of ammonium (NH4 +) by bacterial assemblages were conducted in the northern Gerlache Strait region of the Antarctic Peninsula. Short term incubations of surface waters containing 15N-NH4 + as a tracer showed the bacterial population taking up 0.041–0.128 g-atoms Nl–1d–1, which was 8–25% of total NH4 + uptake rates. The large bacterial uptake of NH4 + occurred even at low bacterial abundance during a rich phytoplankton bloom. Estimates of bacterial production using 3H-leucine and -adenine were l.0gCl–1 d–1 before the bloom and 16.2 g Cl–1 d–1 at the bloom peak. After converting bacterial carbon production to an estimate of nitrogen demand, NH4 + was found to supply 35–60% of bacterial nitrogen requirements. Bacterial nitrogen demand was also supported by dissolved organic nitrogen, generally in the form of amino acids. It was estimated, however, that 20–50% of the total amino acids taken up were mineralized to NH4 +. Bacterial production of NH4 + was occurring simultaneously to its uptake and contributed 27–55% of total regenerated NH4 + in surface waters. Using a variety of 15N-labelled amino acids it was found that the bacteria metabolized each amino acid differently. With their large mineralization of amino acids and their relatively low sinking rates, bacteria appear to be responsible for a large portion of organic matter recycling in the upper surface waters of the coastal Antarctic ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号