首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ACladosporium species produced large amounts of cellulase enzyme components when grown in shake-culture with medium containing carboxymethylcellulose. There was significantly less activity when Avicel, filter paper or cotton were used as substrates. KNO3 was better than NH4Cl or urea for the production of cellulase. Tween 80 at 0.1% (w/v) increased the production of cellulase by 1.5 to 4.5-fold. All the cellulase components were optimally active in the assay at pH 5.0 and 60°C.  相似文献   

2.
Summary The nucleotide sequence of a 2.314 kb DNA segment containing a gene (cedl) expressing cellodextrinase activity from Butyrivibrio fibrisolvens H17c was determined. The B. fibrisolvens H17c gene was expressed from a weak internal promoter in Escherichia coli and a putative consensus promoter sequence was identified upstream of a ribosome binding site and a GTG start codon. The complete amino acid sequence (547 residues) was deduced and homology was demonstrated with the Clostridium thermocellum endoglucanase D (EGD), Pseudomonas fluorescens var. cellulose endoglucanase (EG), and a cellulase from the avocado fruit (Persea americana). The ced1 gene product Cedl showed cellodextrinase activity and rapidly hydrolysed short-chain cellodextrins to yield either cellobiose or cellobiose and glucose as end products. The Cedl enzyme released cellobiose from p-nitrophenyl--d-cellobioside and the enzyme was not inhibited by methylcellulose, an inhibitor of endoglucanase activity. Although the major activity of the Cedl enzyme was that of a cellodextrinase it also showed limited activity against endoglucanase specific substrates [carboxymethylcellulose (CMC), lichenan, laminarin and xylan]. Analysis by SDS-polyacrylamide gel electrophoresis with incorporated CMC showed a major activity band with an apparent M r of approximately 61000. The calculated M r of the ced1 gene product was 61023.Abbreviations Ap ampicillin - ced1 gene coding for Ced1 - Ced1 cellodextrinase from B. fibrisolvens - CMC carboxymethylcellulose - LB Luria Bertani - ORF open reading frame - pNPC p-nitrophenyl--d-cellobioside - PC phosphate citrate - HCA hydrophobic cluster analysis  相似文献   

3.
Studies were made of the polysaccharide-hydrolyzing activity inFrankia (Actinomycetales) grown in synthetic media using modifications of three standard assay procedures. In screening five different strains ofFrankia for cellulase activity, based on the method of utilization of cellulose in liquid culture, only one strain, CcI3, degraded filter paper cellulose to complete disintegration and only under very specific conditions of pH and primary carbon source. When carboxymethylcellulose (CMC) at 1% was used as substrate, all five strains showed the capacity to produce reducing sugars as hydrolytic products. Microcystalline cellulose, xylans and gum arabic were hydrolyzed to a lesser extent. Optimum activity depended upon pH and primary carbon source with pH 5.0 and pyruvate or propionate producing highest activities. In fractionation studies of culturedFrankia, assays for hydrolysis of 1% CMC in liquid medium showed that highest activity was in the enzyme preparation supernatant with lesser activity in the cell-free extract and cell wall fractions.Frankia strain CpI1 showed the greatest total hydrolytic activity against CMC after 2 weeks of culture. Strains ArI3 and CcI3 also showed good activity. The agar plate method for direct dye-polysaccharide interaction proved to be the least sensitive assay method with only ArI3 showing significant activity using CMC as substrate. It appears that theFranka strains grown in synthetic media all showed hydrolytic activity but the degree of hydrolysis of polysaccharides to reducing sugars depends upon strain of bacteria and very specific cultural conditions.  相似文献   

4.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

5.
Summary Purified xylanase A ofTrichoderma longibrachiatum was active on one of two carboxymethyl cellulose (CMC) preparations used as cellulase assay substrates. The pattern of enzyme activity, and analysis of the substrate by acid hydrolysis and thin-layer chromatography (TLC) suggested that the enzyme had acted on xylan present in the CMC.  相似文献   

6.
A total of 26 thermophilic isolates, selected from a compost of agricultural waste, which was mostly composed of vegetable, corncob and rice straw, were cultivated at 50 °C for further studies of thermostable cellulase production. The thermostable cellulase gene from the chromosomal DNA of actinomycetes isolate no. 10 was shotgun-cloned and transformed into Streptomyces sp. IAF 10-164. A transformant, T3-1, was found to be a good strain for the production of thermostable cellulases. Cultivation of T3-1 in modified Mandels–Reese broth containing 1% carboxymethylcellulose (CMC)-sodium salt and the optimal condition for microbial growth were studied. Batch cultivation in a flask revealed that CMCase and Avicelase production reached the maximum between the third to fifth day, whereas maximum -glucosidase production occurred on the ninth day. Microbial biomass increased from the first day to the fifth day and then decreased. The crude enzyme had the highest activity at 50 °C and at pH 6.5. The enzyme was shown to be a thermostable cellulase whose activities were stable at 50 °C for more than 7 days.  相似文献   

7.
Cellulase from Ruminococcus albus and Mixed Rumen Microorganisms   总被引:4,自引:2,他引:2       下载免费PDF全文
Cellulase in the cultural filtrates of Ruminococcus albus and cellulase extracted from mixed rumen microorganisms were investigated with acid-swollen cellulose and carboxymethylcellulose as substrates. Maximal activity occurred at approximately pH 5.8 and 47 C. Apparent Michaelis constants (Km) varied between 0.53 and 0.02% carboxymethylcellulose, depending on the level of activity and the method of assay. R. albus cellulase has a lower Km value than the enzyme extracted from mixed rumen microorganisms. Antisera from rabbits immunized with a cellulase preparation from R. albus inhibited the cellulolytic activity of both systems. Based on the relative degree of inhibition, approximately 20% of the cellulase of the mixed rumen microorganisms was immunologically similar to R. albus cellulase. Ratios of activity in different assay techniques showed the two sources of activity to be similar in the mechanisms of degradation. However, glucose is the main product of cellulose degradation by mixed rumen microorganisms, and cellobiose is the product of degradation by R. albus.  相似文献   

8.
Bacillus subtilis CK-2, isolated from garden organic waste compost, was found to have high hydrolytic activity against carboxymethylcellulose (CMC) due to the secretion of an endo--1,4-glucanase. Enzyme production was related to the sporulation process, and was regulated by the concentration of readily metabolizable carbohydrate in growth medium. Enzyme production did not require CMC or other cellulose containing materials. The endo--1,4-glucanase activity was optimal at pH 5.6–5.8 and at 65 MoC, and achieved thermal stability up to 55 MoC. The activity was inhibited by Hg2+. The purified enzyme gave a single band corresponding to a MW of 35.5 kDa on SDS-PAGE, while the Sephadex G-75 chromatography revealed a molecular weight of the active enzyme around 70 kDa, indicating a dimeric form of the active enzyme. The enzyme activity was irreversibly inhibited by SDS. Native PAGE and IEF revealed three different isoelectric forms of the enzyme, all with an identical N-terminal amino-acid sequence.Abbreviations CMC carboxymethylcellulose - DNS dinitrosalicylic - SDS sodium dodecyl sulfate  相似文献   

9.
Occurrence of cellulase activity was demonstrated in the filtrates of germinating conidiospores and growing mycelia of P. oryzae. Activity and some properties of cellulase in the filtrate of mycelia grown on rice plant powder as carbon source were compared among various strains.

Cellulase activity (C1 and Cx enzymes; cellulose and carboxymethylcellulose as substrates, respectively) in the filtrate of germinating conidiospores was detected in the pathogenic T–l (Ken 53–33) strain as well as nonpathogenic 0 (THU 3 × 1) strain of P. oryzae. The activity was higher in the former than the latter strains. Cellulase activity (Cx enzyme) in the filtrate of growing mycelia was detected in the four strains used, T–l (Ken 53–33), C–3 (N 87), N–1 (H373), and 0 (THU 3 × 1). Cellulase activity (Cx enzyme) in the filtrate of mycelia was optimal at pH 5.0 and 40°C, and stable up to 40°C. Their properties did not differ significantly except for the pH-activity curve at alkaline side among various strains; but cellulase activity (C1 enzyme) was found to be correlated with their pathogenicity except for the case of C–3 strain.  相似文献   

10.
One thermostable endoglucanase (CMCase) was purified to homogeneity from the culture supernatant of a new isolated thermophilic bacterium Caldibacillus cellulovorans. The molecular weight of the enzyme was 85.1 kDa as determined by SDS Polyacrylamide gel electrophoresis (PAGE) and 174 kDa by size-exclusion chromatography. The isoelectric point of the enzyme was at pH 4.12. The temperature for maximum activity was 80 °C, with half-lives of 32 min at 80 °C, and 2 min at 85 °C, and 83% activity remaining after 3 h at 70 °C. Thermostability of the enzyme was increased twofold by the addition of bovine serum albumin. Maximal activity was observed between pH 6.5 and 7.0. The enzyme activity was significantly inhibited by Zn2+, Hg2+, and p-chloromercuribenzenesulphonic acid. The enzyme showed high activity on carboxymethylcellulose (CMC) with much lower activity on Avicel; a low level of activity was also found against xylan. Cellobiose was the major product of hydrolysis of amorphous cellulose and CMC. Viscometric analysis indicated that the enzyme hydrolysed CMC in an exo-acting fashion. Cellotriose and cellobiose were not degraded and at least four contiguous glucosyl residues were necessary for degradation by the enzyme. The K m and V max of the enzyme for CMC were 3.4 mg ml–1 and 44.7 mol min–1 (mg protein)–1, respectively.  相似文献   

11.
秸秆纤维素分解菌的酶活力测定   总被引:8,自引:0,他引:8  
目的:测定秸秆纤维素分解菌的酶活力。方法:从土壤中分离出具有分解纤维素能力的菌株,采用刚果红染色法进行粗选,得到7株透明圈较大的菌株。将这7株菌株液体发酵培养6d,再分别用滤纸分解度观察、羧甲基纤维素酶活法(CMC)、滤纸酶活法(FPA)和天然纤维素酶活法测定其酶活力。结果:在7株菌株中,F-1、F-2、F-3、F-5的酶活力测定结果与其溶解圈的测定结果、滤纸分解结果基本相同。且天然纤维素酶活力高的菌株,其CMC酶活、FPA酶活也高,滤纸分解效果也比较明显。结论:CMC法、FPA法和天然纤维素酶活法适于测定秸秆纤维素分解菌的酶活力。  相似文献   

12.
Cellulolytic fungi, 34 strains, were isolated from samples taken from palm oil mill residues and effluent, and high cellulase producers selected in comparison with nine known reference strains. Although 13 isolates showed good filter paper distintegration within 14 days, only eight isolates exhibited clearing zones around their colonies on carboxymethylcellulose (CMC) agar medium. Quantitative cellulase activity measurements, using CMC as carbon source, selected three of the eight isolates as potential cellulase producers. Using dried palm oil mill condensate as carbon source, only one of the isolates (F 11) showed similar results on both carbon sources. During media optimization for CMCase production, a four-fold increase from 0.058 to 0.275 U/ml was obtained using a medium, containing 0.1% (v/v) Tween 80 0.02% (w/v) NH4NO3, 0.025% (w/v) proteose-peptone and 0.1% (w/v) CMC dissolved in undiluted condensate from the sterilization of oil palm bunches, with an initial pH of 5.5.  相似文献   

13.
Three enzymes with milk-clotting activity have been isolated from the fruiting bodies of Pleurotus ostreatus (Fr.) Kumm) by (NH4)2SO4 precipitation, gel chromatography on Sephadex G75, and ion exchange chromatography on carboxymethylcellulose (CMC). Isoelectric points of the enzymes, as determined by isoelectrofocusing, equaled 4.2, 6.7, and 8.8. Inhibition analysis showed that the enzymes with isoelectric points of 4.2 and 6.7 belong to the class of metal-dependent proteinases, while the enzyme with the isoelectric point of 8.8 belongs to the serine protease class.  相似文献   

14.
Cellulase production by strains of Myrothecium verrucaria, Stachybotrys atra and Trichoderma viride was examined. Myrothecium verrucaria was found to give the greatest yields. A variety of media were examined as potential substrates for the industrial production of cellulase. The salts content of the medium was varied and was found to affect cellulase production. Glucose, carboxymethylcellulose (CMC), filter paper and three industrial wastes were examined as possible cellulase inducers. Filter paper was found to be the most effective, followed by sugar cane bagasse and CMC.  相似文献   

15.
An extracellular carboxymethylcellulase (endo-1,4--glucanase) fromCurvularia lunata, grown at 30°C with an initial pH of 6.0, had optimal activity at pH 4.8 and 50°C. The enzyme was unstable above 50°C. The enzyme had aK m for carboxymethylcellulose of 0.97 g/l and aV max of 5.4 IU/ml.  相似文献   

16.
A cellulase (endo-beta-1,4-glucanase, EC 3.2.1.4) was purified from the gut of larvae of the yellow-spotted longicorn beetle Psacothea hilaris by acetone precipitation and elution from gels after native PAGE and SDS/PAGE with activity staining. The purified protein formed a single band, and the molecular mass was estimated to be 47 kDa. The purified cellulase degraded carboxymethylcellulose (CMC), insoluble cello-oligosaccharide (average degree of polymerization 34) and soluble cello-oligosaccharides longer than cellotriose, but not crystalline cellulose or cellobiose. The specific activity of the cellulase against CMC was 150 micro mol.min-1.(mg protein)-1. TLC analysis showed that the cellulase produces cellotriose and cellobiose from insoluble cello-oligosaccharides. However, a glucose assay linked with glucose oxidase detected a small amount of glucose, with a productivity of 0.072 micro mol.min-1.(mg protein)-1. The optimal pH of P. hilaris cellulase was 5.5, close to the pH in the midgut of P. hilaris larvae. The N-terminal amino-acid sequence of the purified P. hilaris cellulase was determined and a degenerate primer designed, which enabled a 975-bp cDNA clone containing a typical polyadenylation signal to be obtained by PCR and sequencing. The deduced amino-acid sequence of P. hilaris cellulase showed high homology to members of glycosyl hydrolase family 5 subfamily 2, and, in addition, a signature sequence for family 5 was found. Thus, this is the first report of a family 5 cellulase from arthropods.  相似文献   

17.
The cellulosomal family 9 cellulase genes engH, engK, engL, engM, and engY of Clostridium cellulovorans have been cloned and sequenced. We compared the enzyme activity of family 9 cellulosomal cellulases from C. cellulovorans and their derivatives. EngH has the highest activity toward soluble cellulose derivatives such as carboxymethylcellulose (CMC) as well as insoluble cellulose such as acid-swollen cellulose (ASC). EngK has high activity toward insoluble cellulose such as ASC and Avicel. The results of thin-layer chromatography showed that the cleavage products of family 9 cellulases were varied. These results indicated that family 9 endoglucanases possess different modes of attacking substrates and produce varied products. To investigate the functions of the carbohydrate-binding module (CBM) and the catalytic module, truncated derivatives of EngK, EngH, and EngY were constructed and characterized. EngHΔCBM and EngYΔCBM devoid of the CBM lost activity toward all substrates including CMC. EngKΔCBM and EngMΔCBM did not lose activity toward CMC but lost activity toward Avicel. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity.  相似文献   

18.
An extracellular alkaline carboxymethycellulase (CMCase) from Bacillus subtilis was purified by salt precipitation followed by anion-exchange chromatography using DEAE-Sepharose. The cell-free supernatant containing crude enzyme had a CMCase activity of 0.34 U/mg. The purified enzyme gave a specific activity of 3.33 U/mg, with 10-fold purification and an overall activity yield of 5.6%. The purified enzyme displayed a protein band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular size of 30 kDa, which was also confirmed by zymogram analysis. The enzyme displayed multisubstrate specificity, showing significantly higher activity with lichenan and β-glucan as compared to carboxymethylcellulose (CMC), laminarin, hydroxyethylcellulose, and steam-exploded bagasse, and negligible activity with crystalline substrate such as Avicel and filter paper. It was optimally active at pH 9.2 and temperature 45°C. The enzyme was stable in the pH range 6–10 and retained 70% activity at pH 12. Thermal stability analysis revealed that the enzyme was stable in temperature range of 20°C to 45°C and retained more than 50% activity at 60°C for 30 min. The enzyme had a Km of 0.13 mg/ml and Vmax of 3.38 U/mg using CMC as substrate.  相似文献   

19.
Brine shrimp (Artemia salina) belong to a group of crustaceans that feed on microalgae and require a cellulase enzyme that can be used in ethanol production from marine algae. Protein with potential cellulase activity was purified and the activity analyzed under different conditions. After initial identification of cellulase activity by CMC cellulase, surface sterilization and PCR using 16s rRNA primers was conducted to confirm that the cellulase activity was not produced from contaminating bacteria. The enzyme was purified by ammonium sulfate fractionation, gel filtration, and ion exchange chromatography. After the final purification, a 70-fold increase in specific enzyme activity was observed. SDS–PAGE results revealed that the cellulase enzyme had a molecular mass of 96 kDa. Temperature, pH, and salinity values were found to be optimal at 55 °C, pH 8.0, and 600 mM NaCl, respectively. Specifically, the enzyme showed a fivefold increase in enzyme activity in seawater compared to 600 mM NaCl in phosphate buffer. Further analysis of the purified enzyme by molecular spectrometry showed no match to known cellulases, indicating this enzyme could be a novel halophilic cellulase that can be used for the production of bioethanol from marine macroalgae.  相似文献   

20.
Summary The nucleotide sequence of engD, an endo--1,4-glucanase gene from Clostridium cellulovorans was determined (Genbank Accession No. M37434). The COON-terminal part of the gene product, EngD, contained a Thr-Thr-Pro repeated sequence followed by a region that has homology to the exoglucanase of Cellulomonas fimi. EngD and EngB, another C. cellulovorans endoglucanase, show 75% amino acid sequence homology at their NH2-termini, in contrast to their carboxyterminal domains which show no homology. EngD had endoglucanase activity on carboxymethylcellulose (CMC), cellobiosidase activity on p-nitrophenyl-cellobioside (p-NPC), and partial hydrolytic activity on crystalline cellulose (Avicel), while EngB showed hydrolytic activity against only CMC. Chimeric proteins between EngB and EngD were constructed by exchanging the non-homologous COOH-terminal regions. Chimeric proteins that contained the NH2-terminus of EngD retained cellobiosidase activity but chimeras with the EngB NH2-terminus showed no cellobiosidase activity. Hydrolysis of crystalline cellulose (Avicelase activity) was observed only with the enzyme containing the EngD NH2-terminus and EngD COOH-terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号