首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar compositions of cell walls of dark-grown coleoptiles from12 barley strains, 11 of which were coleoptilar semi-dwarf strains,were analyzed on days 2 and 3 after germination. Major wallcomponents of the 12 strains were arabinose, xylose, and glucosein hemicellulose and cellulose; minor components were galactoseand mannose. The sugar content of each wall component per unit length wasnot correlated to any growth parameters calculated from a logisticequation simulating coleoptile growth, but the relative contentsof galactose and mannose in relation to the total wall sugarcontent was correlated to the growth rate on day 3 and the growthcontinuing period. These facts suggest that growth of these12 barley strains in the late growth stage is regulated by theminor wall components, galactose and mannose. 1 Dedicated to the late Professor Joji Ashida. (Received October 12, 1982; Accepted January 12, 1983)  相似文献   

2.
The relationship between the flank growth of oat (Avena sativaL. cv. Victory) coleoptiles and the distribution of endogenousindole-3-acetic acid (IAA) and growth inhibitor(s) in the coleoptileswas studied for the second positive phototropic curvature inducedby a continuous unilateral illumination with white light (0.1W.m–2). The phototropic curvature was caused by growthinhibition at the lighted side and growth promotion at the shadedside. Using electron capture detection gas chromatography, weanalyzed the distribution of endogenous IAA in phototropicallyresponding oat coleoptiles and found that the IAA was evenlydistributed over the lighted and shaded sides during the phototropicresponse; there was also no detectable difference in the amountsof IAA between phototropically stimulated and non-irradiatedcoleoptiles. By contrast, oat coleoptile straight-growth testresults showed that the amount of unknown acidic growth inhibitor(s),different from abscisic acid, increased in the lighted halfof the coleoptiles and decreased in the shaded half, as comparedto the amount in the non-irradiated half. These data suggestthat the phototropic curvature of oat coleoptile is inducedby a difference in lateral flank growth through a lateral gradientof endogenous growth inhibitor(s) rather than of IAA. (Received February 10, 1988; Accepted July 29, 1988)  相似文献   

3.
Incubation of Zea coleoptiles in 0.5 M mannitol totally inhibitsgrowth and geotropic curvature, but does not affect the developmentof the geoelectric effect. This pre-treatment also inhibitsthe curvature induced by the asymmetrical application of IAAto the apical end of decapitated vertical coleoptiles, but itdoes not prevent the IAA from giving rise to an electropotentialdifference between the two sides of the coleoptile. Neitherthe normal geoelectric effect, nor the auxin-induced potentialdifference in vertical coleoptiles, can therefore arise as theresult of the different rates of cell extension in the two halvesof the organ. They must be the result of the change of IAA concentrationaffecting some other aspect of the cell's physiology or metabolism. The abolition of the electrical responses in coleoptiles whichhave been plasmolysed in 1.0 M mannitol strongly suggests thatboth longitudinal and lateral transport of IAA are severelydepressed by this degree of plasmolysis. Asymmetrical application of 10-5 M mersalyl and several othersubstances to the apical end of a decapitated vertical coleoptilegave rise to a marked electropotential difference between thetwo sides of the coleoptile, the side beneath the donor beingpositively charged with respect to the other side. Mersalyldoes not promote the growth of Zea coleoptiles. These resultsprovide additional evidence that the electropotentials do notarise from differential growth, and suggest that such substances,especially the diuretics used in clinical medicine, may provideuseful tools in the further study of the induction of surfaceelectropotentials in plant tissues at the cellular level.  相似文献   

4.
Elongation of coleoptile segments, having or not having a tip,excised from rice (Oryza sativa L. cv. Sasanishiki) seedlingswas promoted by exogenous ethylene above 0.3 µl l–1as well as by IAA above 0.1 µM. Ethylene production ofdecapitated segments was stimulated by IAA above 1.0µM,and this was strongly inhibited by 1.0 µM AVG. AVG inhibitedthe IAA-stimulated elongation of the decapitated segment witha 4 h lag period, and this was completely recovered by ethyleneapplied at the concentration of 0.03 µl l–1, whichhad no effect on elongation without exogenous IAA. The effectsof IAA and ethylene on elongation were additive. These factsshow that ethylene produced in response to IAA promotes ricecoleoptile elongation in concert with IAA, probably by prolongingthe possible duration of the IAA-stimulated elongation, butthat they act independently of each other. Moreover, AVG stronglyinhibited the endogenous growth of coleoptile segments withtips and this effect was nullified by the exogenous applicationof 0.03 µl l–1 ethylene. These data imply that theelongation of intact rice coleoptiles may be regulated cooperativelyby endogenous ethylene and auxin in the same manner as foundin the IAA-stimulated elongation of the decapitated coleoptilesegments. Key words: oryza sativa, Ethylene, Auxin, Coleoptile growth  相似文献   

5.
The final lengths of intact dark-grown coleoptiles vary with species and cultivar. The growth distribution pattern in the apical 25-mm growing zone and the absolute amount of growth in each zone depend on the age and species of the coleoptile. A comparative study of several cultivars of wheat, Triticum vulgare, and barley, Hordeum vulgare, indicates that the growth distribution pattern in 30- to 38-mm coleoptiles varies with the species and cultivar. In barley, there are two patterns of growth distribution among the several cultivars, whereas in wheat, all cultivars exhibit a common zonal growth pattern. The total growth of coleoptiles, initially 30 to 38 mm in length, during a 24-hour dark incubation period is the same in dark-grown coleoptiles as in those irradiated with 3 minutes of red (660 nm) light prior to the incubation period. The growth distribution pattern in the growing zone of this 30- to 38-mm coleoptile is, however, altered by red light. Growth of the apical 5-mm zone is stimulated by red light and the zonal growth 5 to 10 mm below the apex is only slightly affected, whereas growth in the zones 10 to 15 to 20, and 20 to 25 mm below the apex is inhibited. This growth distribution pattern in irradiated coleoptiles changes as the coleoptile increases in length. The response of a zone following exposure to red light is dependent upon the age of the seedlings irradiated. The over-all effect of red light on growth of the intact coleoptile varies with the length of the coleoptile. In young seedling 20 to 29 mm in length, the cells of the coleoptile can compensate for the effects of red light, with the over-all growth of the dark-grown and irradiated coleoptile about the same. As the seedling grows older, the cells of the coleoptile can no longer make up for the effects of red light, and the over-all effect changes from compensation to pronounced inhibition.  相似文献   

6.
RNA metabolism in oat coleoptiles was studied using physiologicalresponses to 5-FU and actinomycin D; autoradiographic detectionof RNA and protein synthesis; and estimation of ribosomal concentrationby analytical ultracentrifugation. 5-FU failed to inhibit growthof either intact coleoptiles or isolated coleoptile segmentsbut completely blocked cell division in roots. Actinomycin Dmarkedly inhibited auxin-induced expansion of coleoptile segments.When supplied to isolated segments from coleoptiles of variouslengths the RNA precursors cytidine, adenine and adenosine allshowed weak incorporation into RNA of nuclei and in some cases,to a lesser extent, RNA of cytoplasm. IAA did not affect thisRNA synthesis but it was considerably reduced by actinomycinD. A proportion of the label incorporated from RNA precursorswas not removable with either RNase, PCA or hot TCA but wasextracted by trypsin. The amount of this spurious incorporationincreased with coleoptile age, as did the ability to incorporatelabelled amino acids. The concentration of both free and boundribosomes does not increase in growing coleoptiles and may evendecline. Free ribosomes decline markedly in fully grown coleoptileswhile the proportion of bound ribosomes increases. It is concludedthat young coleoptiles contain a full complement of ribosomesnecessary for subsequent growth but normal growth is dependenton continued production of an actinomycin D-sensitive messenger-typeRNA. No evidence for auxin mediation of RNA synthesis was found. 1Present address: Laboratory of Cell Biology, Faculty of Science,Osaka City University, Sugimoto-cho, Sumiyoshi-ku, Osaka, Japan.  相似文献   

7.
The development of the geoelectric effect has been followedin Zea coleoptiles with a flowing-solution electrode system,and its dependence upon auxin concentration gradients and aerobicmetabolism assessed. A symmetrical source of IAA can effectively replace the coleoptiletip in allowing the geo-electric potential to occur. The diffusatefrom coleoptile tips, when applied asymmetrically to the apexof a vertical decapitated coleoptile, generates a potentialdifference across the coleoptile indistinguishable from thatinduced by the asymmetrical application of IAA. Asymmetricalapplication of IAA to vertical Avena and Zea coleoptiles andHelianthus hypocotyls induces closely similar responses. Neither the geoelectric effect nor a geotropic response developswhen intact Zea coleoptiles are placed horizontally after beingdeprived of oxygen, but they both occur when an aerobic atmosphereis restored. The lateral potential difference induced by theasymmetrical application of IAA to the apex of a vertical coleoptiledoes not occur under anoxic conditions. With a static-drop electrode system and a decapitated Zea coleoptile,a potential difference develops immediately after reorientationof the coleoptile into the horizontal position, and attainsa maximum value after about 10 min. This potential differencecan be further increased by the asymmetrical application ofIAA to the lower half of the apical cut surface of the coleoptile. Our data support the view that both the geoelectric potentialand the geotropic response are due to the IAA concentrationgradient which arises from the lateral transport of this substancefrom the upper to the lower half of the horizontal shoot. Theyalso bear out our previous conclusions that the ‘geoelectricpotential’ observed with static-drop electrodes and anintact shoot, is the resultant of two processes. The first isa physical phenomenon arising in the electrodes, or betweenthe electrodes and the plant tissue, and the second arises inthe living tissues of the shoot as the result of gravity-inducedchanges in auxin distribution.  相似文献   

8.
Reverse-phase high-performance liquid chromatography was usedto analyse [14C]-labelled metabolites of indole-3-acetic acid(IAA) in coleoptile segments of Zeo mays seedlings. After incubationfor 2 h in 10–2 mol m–3 [2-14C]IAA, methanolic extractsof coleoptiles contained between six and ten radioactive compounds,one of which co-chromatographed with IAA. The metabolic productsin coleoptile extracts appeared to be similar to those in rootextracts, with an oxindole-3-acetic-acid-like component as theprincipal metabolite, but the rate of metabolism was slowerin coleoptile than in root segments. Decarboxylation did notappear to play a major role in the metabolism of exogenous IAAduring the short incubation periods. Moreover, external IAAconcentration had little effect on the pattern of metabolism.Coleoptile segments were also supplied with [14C]IAA from agardonor blocks placed at the apical ends, and agar receiver blockswere placed at the basal ends. After incubation for 4 h, theidentity of the single radioactive compound in the receiverblocks was shown to be IAA by both reverse-phase high-performanceliquid chromatography and gas chromatography-mass spectrometrytechniques. Key words: Zea mays, Coleoptile, High-performance liquid chromatography, Indole-3-acetic acid  相似文献   

9.
The effects of the morphactin 2-ehloro-9-hydroxyfluorene-9-carboxylicacid methyl ester [CFM] on growth, geotropic curvature and transportand metabolism of indol-3yl-acetic acid [IAA-5-3H] in the coleoptilesof Zea mays and A vena saliva have been investigated. A strongcorrelation has been found to exist between the inhibition ofthe geotropic response and the inhibition of auxin transport.CFM supplied at concentrations sufficient to abolish auxin transporthas been shown to promote the elongation of Zea, but not ofAvena, coleoptile segments. CFM does not change the patternof metabolism of IAA in Zea coleoptile segments. In these segmentsIAA is metabolized when its concentration is high, but the radioactivitytransported basipetally, or laterally in geotropically stimulatedcoleoptiles, is virtually confined to the IAA molecule. Radioactivityexported into the basal receiver blocks is wholly confined toIAA. It is concluded that CFM inhibits the geotropic responsein coleoptiles by suppression of the longitudinal and lateralauxin transport mechanisms. The growth-promoting propertiesof this substance cannot be linked with its effects on eitherauxin metabolism or transport.  相似文献   

10.
IAA-induced elongation of rice (Oryza sativa L. cv. Sasanishiki)coleoptiles is regulated by cooperation between IAA and ethyleneproduced in response to IAA. However, the presence of some solutes,such as K$, Na$, Rb$, glucose and sucrose, in the incubationmedia was found to be indispensable for this cooperation. Withoutthose solutes, the IAA-induced elongation was not sustainedover a long time period. IAA caused increases in both the osmoticpotentials of the coleoptile cells and the extensibility oftheir cell wall. In epidermal cells of IAA-treated coleoptiles,the osmotic potential increased from –0.87 to –0.62MPa during a 4-h incubation with 1 mM KCl. Moreover, IAA promotedthe uptake of K$ or Na$ from the media into the coleoptiles.However, these effects of IAA were partially prevented by aminoethoxyvinylglycine(AVG), and all the AVG effects were completely nullified byethylene applied simultaneously and exogenously. Both IAA andethylene did not affect the wall yield stress. These resultssuggested that the long-term elongation induced by IAA in ricecoleoptile segments results from inhibiting increases in osmoticpotentials of their cells. The maintenance by IAA of low osmoticpotentials may be partly due to the promotive action of ethyleneproduced in response to IAA on the solute uptake from the media. (Received July 6, 1983; Accepted February 15, 1984)  相似文献   

11.
Effect of Peeling on IAA-induced Growth in Avena Coleoptiles   总被引:1,自引:0,他引:1  
POPE  D. G. 《Annals of botany》1982,49(4):493-501
The act of peeling removes the epidermis exclusively from Avenacoleoptiles. Peeling inhibits IAA-induced growth, by inhibitingthe growth of segments incubated in the presence of IAA, andpromoting that of those incubated in water. The magnitude ofthe inhibition of IAA-induced growth is proportional to theamount of epidermis removed. It is shown that neither lateralswelling, wounding, anaerobiosis, nor exposure to supraoptimalconcentrations of IAA cause the inhibition. It is concludedthat in Avena coleoptiles the epidermis regulates the rate ofexpansion of the underlying parenchyma cells and is the principaltarget of IAA-action. Avena sativa L., oat, coleoptile, indol-3-ylacetic acid, auxin, extension growth  相似文献   

12.
Plasmodesmata, Tropisms, and Auxin Transport   总被引:4,自引:0,他引:4  
Attempts were made to disrupt the plasmodesmata between oatcoleoptile cells (Avena saliva L. cv. Victory) by severe plasmolysis.Coleoptiles, allowed to regain turgor after plasmolysis, wereable to execute geotropic and phototropic curvatures and segmentswould grow in response to applied auxin. In coleoptiles similarlytreated, studies with [14C]IAA have shown that longitudinal,basipetal transport of auxin still takes place and, as in controls,IAA is preferentially redistributed laterally within coleoptilesorientated horizontally. Physical continuity of the symplast of oat coleoptile cellsmay not always be disrupted by severe plasmolysis. Nevertheless,functional continuity appears to be interrupted. Despite this,all the processes involved in the execution of tropistic curvaturesremain intact, including transport of hormones. Plasmodesmatalcontinuity between oat coleoptile cells appears not to be anecessary requirement for auxin transport.  相似文献   

13.
Elicitor from Erysiphe pisi was incorporated into gel beads.Individual beads were placed on single cells from barley coleoptiles.The elicitor induced unusual cytoplasmic responses and temporaryresistance to infection in coleoptile cells. The technique isapplicable to assessment of elicitor activity at the single-celllevel. 1Contribution no. 118 from the Laboratory of Plant Pathology,Mie University. 2Present address: Laboratory of Plant Pathology & GeneticEngineering, College of Agriculture, Okayama University, Okayama,700 Japan  相似文献   

14.
The rates of elongation of the coleoptiles of Avena seedlings,subjected to intermittent immersion in solutions of IAA or 2:4-Dfor various total periods, were determined from measurementsof photographs taken every hour by infra-red radiation. Immersion in 17·5 mg./l. IAA for 1–5 hours causeda large increase in the growth rate followed by a depression.When the seedlings were immersed in 8·75 mg./l. IAA forperiods of 12 or 24 hours the depression was partially overcomeso long as the treatment was continued. Absorption of additionalIAA by the coleoptiles reduced their geotropic sensitivity. Penetration of 2:4-D (sodium salt) into the coleoptiles wasslower than that of IAA and the resulting stimulation of thegrowth rate was less, particularly in unbuffered solutions.After the treatment the growth rate declined slowly to aboutthe normal value. Results with coleoptiles were very similar to those previouslyobtained with rhizomes of Aegopodium and suggest that inhibitionof growth following stimulation by IAA may be of general occurrence.Possible causes of the inhibition are discussed and a comparisonis made between the results with intact coleoptiles and observationsmade by others on coleoptile sections. Temporary immersion of the seedlings in auxin solutions depressedthe rate of elongation of the primary leaf while it increasedthat of the coleoptile. It caused little disturbance of theendogenous rhythm induced by change from light to darkness.The suggestion that such rhythms can be explained in terms ofvariation in concentration of IAA-oxidase is not supported.  相似文献   

15.
Exogenously applied D-tryptophan (D-Trp) was more effective than L-Trp in inducing elongation of coleoptile segments of a normal barley ( Hordeum vulgare L. cv. Akashinriki) strain and a semi-dwarf strain with lower endogenous indole-3-acetic acid (IAA) level. D-cycloserine, an inhibitor of D-aminotransferase, completely inhibited both the D- and L-Trp-induced elongation of both strains. Addition of D-Trp increased IAA levels in both strains 4-fold over endogenous levels. The increase in IAA level was completely inhibited by D-cycloserine. The endogenous L-Trp level of semi-dwarf coleoptiles was similar to that of normal ones. These results suggested that IAA is synthesized by the conversion of L-Trp to indole-3-pyruvic acid via D-Trp in both strains, and that the lower IAA level of the semi-dwarf strain probably is a result of the impeded IAA biosynthesis involved in D-Trp.  相似文献   

16.
Magnetophoretic induction of curvature in coleoptiles and hypocotyls   总被引:1,自引:1,他引:0  
Coleoptiles of barley (Hordeum vulgare) were positioned in ahigh gradient magnetic field (HGMF, dynamic factor H2/2 of 109–1010Oe2 cm–1), generated by a ferromagnetic wedge in a uniformmagnetic field) and rotated on a 1 rpm clinostat. After 4 h90% of coleoptiles had curved toward the HGMF. The cells affectedby HGMF showed clear intracellular displacement of amyloplasts.Coleoptiles in a magnetic field next to a non-ferromagneticwedge showed no preferential curvature. The small size of thearea of non-uniformity of the HGMF allowed mapping of the sensitivityof the coleoptiles by varying the initial position of the wedgerelative to the coleoptile apex. When the ferromagnetic wedgewas placed 1 mm below the coleoptile tip only 58% of the coleoptilescurved toward the wedge indicating that the cells most sensitiveto intracellular displacement of amyloplasts and thus gravitysensing are confined to the top 1 mm portion of barley coleoptiles.Similar experiments with tomato hypocotyls Lycopersicum esculentum)also resulted in curvature toward the HGMF. The data stronglysupport the amyloplast-based gravity-sensing system in higherplants and the usefulness of HGMF to substitute gravity in shoots. Key words: Avena sativa, Hordeum vulgare, Lycopersicon esculentum, curvature, gravitropism, high gradient magnetic field, magnetophoresis  相似文献   

17.
Extracts of light- and dark-grown, normal and dwarf pea seedlings(Pisum sativum L. cv. Alaska and Radio respectively) were purifiedby solvent partitioning, column, paper and thin layer chromatography.Conventional acid-base partitioning was modified because thelarge volumes of material processed caused considerable crosscontamination between neutral and acidic phases. At each stepof the purification, fractions were tested for inhibitory activitywith the wheat coleoptile and pea section tests. Recovery ofabscisic acid was monitored using 14C-abscisic acid. Estimatesof abscisic acid content were marie using gas-liquid chromatographyand the wheat coleoptile bioassay. Two main inhibitors were found; one of these was identifiedas (+)-abscisic acid, the other (inhibitor Y) has not been identifiedbut displays chromatographic properties which suggest that itis neutral in nature. Abscisic acid was found in both rootsand shoots of light- and dark-grown pea seedlings. InhibitorY was found in trace amounts in the roots of dark-grown plantsbut could not be detected in the shoots. Growth in light induceda manifold increase in inhibitor Y concentration compared withdark-grown plants. The level of Y was threefold greater in light-growndwarf shoots than in comparable light-grown tall shoots. Therewas, thus, a correlation between the concentration of inhibitorY and the light-induced inhibition of stem elongation.  相似文献   

18.
Coleoptile Senescence in Rice (Oryza sativa L.)   总被引:2,自引:0,他引:2  
We investigated the cellular events associated with cell deathin the coleoptile of rice plants (Oryza sativa L.). Seeds germinatedunder submergence produced coleoptiles that were more elongatedthan those grown under aerobic conditions. Transfer of seedlingsto aerobic conditions was associated with coleoptile opening(i.e. splitting) due to death of specific cells in the sideof the organ. Another type of cell death occurred in the formationof lysigenous aerenchyma. Senescence of the coleoptile was alsonoted, during which discolouration of the chlorophyll and tissuebrowning were apparent. DNA fragmentation was observed by deoxynucleotidyltransferase-mediateddUTP nick end labelling (TUNEL) assay, and further confirmedby the appearance of oligonucleosomal DNA ladders in senescentcoleoptile cells. Two nucleases (Nuc-a and Nuc-b) were detectedby in-gel-assay from proteins isolated from coleoptiles. Nuc-a,commonly observed in three cell death phases required eitherCa2+or Mg2+, whereas Nuc-b which appeared during senescencerequired both Ca2+and Mg2+. Both nucleases were strongly inhibitedby Zn2+. Copyright 2000 Annals of Botany Company Aerenchyma, rice, cell death, coleoptile, fragmentation, nuclease, Oryza sativa, senescence, split, submergence, TUNEL  相似文献   

19.
The cell-wall fraction of barley seedlings was able to oxidizeindole-3-acetaldehyde (IAAld) to form IAA, whereas the fractiondid not catalyze the conversion of in-dole-3-acetonitrile orindole-3-acetamide to IAA. The activity was lower in a semi-dwarfmutant that had an endogenous IAA level lower than that of thenormal isogenic strain [Inouhe et al. (1982) Plant Cell Physiol.23: 689]. The soluble fraction also contained some activity;the activity was similar in the normal and mutant strains. Theoptimal pH for the conversion of IAAld to IAA in the cell-wallfraction was 7; that of soluble fraction was 6. The Km valueof the cell-wall fraction for IAAld was 5 µM; that ofsoluble fraction was 31 µM. The activity was not solubi-lizedby treatments with 1% Nonidet P-40,1 M NaCI, 3 M LiCl, or 50mM MgCl2. The oxidation activity was increased by the additionof NAD+. These results suggest that IAAld oxidation activityis bound to cell-wall components and that the lower level ofIAA in the mutant probably results from reduced activity ofoxidation enzyme bound to cell-wall components. (Received July 31, 1996; Accepted December 16, 1996)  相似文献   

20.
This study demonstrated that, in rice seedlings, genotypic differencein tolerance to anoxia only occurred when anoxia was imposedat imbibition, but not at 3 d after imbibition. When seeds wereimbibed and grown in anoxia, IR22 (anoxia-‘intolerant’)grew much slower and had lower soluble sugar concentrationsin coleoptiles and seeds than Amaroo (anoxia-‘tolerant’),while Calrose was intermediate. After 3 d in anoxia, the sugarconcentrations in embryos and endosperms of anoxic seedlingswere nearly 4-fold lower in IR22 than in Amaroo. Sugar deficitin the embryo of IR22 is presumably due to the limitation ofsugar mobilization rather than the capacity of transport asshown by similar sugar accumulation ratios of 1.8 between embryoand endosperm in IR22 and Amaroo at 3 d in anoxia. With 20 molm–3 exogenous glucose, coleoptile extension and freshweight increments in anoxic seedlings of IR22 were much closerto those in the two other genotypes, nevertheless protein concentrationremained lowest on a fresh weight basis in the coleoptiles ofIR22; indicating that protein synthesis has a lower priorityfor energy apportionment during anoxia than processes crucialto coleoptile extension. In contrast to these responses to anoxiaimposed at imbibition, IR22 had nearly the same high toleranceto anoxia as Calrose and Amaroo, when anoxia was imposed onseedlings subsequent to 48 h aeration followed by 16 h hypoxicpretreatment. In fact, coleoptiles of anoxic IR22 had highersugar concentrations and grew faster than Calrose, and exogenousglucose had no effect on the coleoptile extension of IR22. Excisedcoleoptile tips of IR22 and Amaroo with exogenous glucose hadsimilar rates of ethanol production and were equally tolerantto anoxia. In conclusion, much of the anoxia ‘intolerance’of IR22 when germinated in anoxia could be attributed to limitedsubstrate availability to the embryo and coleoptile, presumablydue to slow starch hydrolysis in the endosperm. Key words: Anoxia, coleoptile, embryo, endosperm, ethanol production, germination, growth, Oryza sativa L., solute net uptake or loss, sugar availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号