首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IR spectra (1600-1800 and 3000-3650 cm-1) of lincomycin base solutions in inert (CCl4 and C2Cl4), proton acceptor (dioxane, dimethylsulfoxide and triethyl amine) and proton donor (CHCl3, CD3OD and D2O) solvents were studied. Analysis of the concentration and temperature changes in the spectra revealed that association in lincomycin in the inert solvents was due to intramolecular hydrogen linkage involving amide and hydroxyl groups. Disintegration of the associates after the solution dilution and temperature rise was accompanied by formation of intramolecular bonds stabilizing the stable conformation structure of the lincomycin molecule. The following hydrogen linkage in the conformation was realized: NH...N (band v NH...N at 3340 cm-1), OH...O involving the hydroxyl at C-7 and O atoms in the D-galactose ring (band v OH...O at 3548 cm-1), a chain of the hydrogen bonds OH...OH...OH in the lincomycin carbohydrate moiety (band v OH...O at 3593 cm-1 and v OH of the end hydroxyl group at 3625 cm-1). Bonds NH and C-O of the amide group were located in transconformation. Group C-O did not participate in the intramolecular hydrogen linkage.  相似文献   

2.
In the IR spectra, the coupling of vibrations leads to band splitting and/or bands shifting in opposite directions which provides information on the mutual orientation of groupings. From such band shifts in the range 1800 to 1500 cm-1 one can draw conclusions on the double helix formation of polynucleotides. These band shifts are caused either by vibrational coupling of stretching vibrations within pairs of base residues or by coupling of stretching vibrations with the bending (scissor) vibration of the -NH2 groups; the latter is indicated by band shifts after deuterium substitution within the amino groups. Couplings of phosphate and 1 ibose vibrations in the range 1300 to 1000 cm-1 provide information on the secondary structure of the backbone. In order to obtain information of the structure of the RNA backbone, the IR spectra of poly(ribonucleotides) were studied in neutral media in which they were single-stranded. The shift due to coupling of the band of the 2'OD bending vibration and that of the antisymmetric stretching vibration of the ether group of the ribose residue proves that ribose residues of the backbone are cross-linked via hydrogen bonds. These are formed between the 2'OD or 2'OH groups, respectively, and the O atoms of the ether group of the neighboring ribose residues. This is the reason for the difference between DNA and RNA as regards the 2'OH group. The structure formation caused by these hydrogen bonds results in a stiffening of the RNA backbone. The tendency to form these hydrogen bonds increases in the order poly (U), poly(C), poly (A). This order of secondary structure stabilization is due to an interplay between the influences of (1) the 2'OH hydrogen bonds and (2) the base residues' stacking. Furthermore, the coupling of the antisymmetric stretching vibration of the greater than PO2- groups with a vibration involving the 2'OH group can result in a doublet structure of the band at about 1240 cm-1 if cations with strong fields are present. This probably shows that these cations can turn the greater than PO2-groups-which are usually turned outward at the backbone, as shown by construction of molecular models- towards the basic residues. Thus they cause stiff monohelices which are right-handed screws.  相似文献   

3.
Resonance Raman analysis of the Pr and Pfr forms of phytochrome   总被引:4,自引:0,他引:4  
S P Fodor  J C Lagarias  R A Mathies 《Biochemistry》1990,29(50):11141-11146
Resonance Raman vibrational spectra of the Pr and Pfr forms of oat phytochrome have been obtained at room temperature. When Pr is converted to Pfr, new bands appear in the C = C and C = N stretching region at 1622, 1599, and 1552 cm-1, indicating that a major structural change of the chromophore has occurred. The Pr to Pfr conversion results in an 11 cm-1 lowering of the N-H rocking band from 1323 to 1312 cm-1. Normal mode calculations correlate this frequency drop with a Z----E isomerization about the C15 = C16 bond. A line at 803 cm-1 in Pr is replaced by an unusually intense mode at 814 cm-1 in Pfr. Calculations on model tetrapyrrole chromophores suggest that these low-wavenumber modes are hydrogen out-of-plane (HOOP) wagging vibrations of the bridging C15 methine hydrogen and that both the intensity and frequency of the C15 HOOP mode are sensitive to the geometry around the C14-C15 and C15 = C16 bonds. The large intensity of the 814-cm-1 mode in Pfr indicates that the chromophore is highly distorted from planarity around the C15 methine bridge. If the Pr----Pfr conversion does involve a C15 = C16 Z----E isomerization, then the intensity of the C15 HOOP mode in Pfr argues that the chromophore has an E,anti conformation. On the basis of a comparison with the vibrational calculations, the low frequency (803 cm-1) and the reduced intensity of the C15 HOOP mode in Pr suggest that the chromophore in Pr adopts the C15-Z,syn conformation.  相似文献   

4.
The Fourier transform infrared spectra of 15 purified retinoids were compared. Retinoids with conjugated C = O groups revealed the presence of a band between 1730 and 1630 cm-1 X A characteristic of retinoids is the presence of a band between 1650 and 1620 cm-1 due to C = C stretching where three to four conjugated C = O and C = C bonds were present or between 1610 and 1555 cm-1 where more conjugated unsaturations were present. The presence of cis double bonds was confirmed by a band at 1380 cm-1 while unsubstituted trans double bonds gave absorbances at 990 to 955 cm-1. Epoxy rings, which are present in some retinoids, resulted in bands at 1250, 880, and 790 cm-1 while a furan structure was confirmed by bands at 1175, 1083, and 1065 cm-1.  相似文献   

5.
In order to characterize the molecular composition of oral streptococci, infrared transmission spectroscopy on freeze-dried cells dissolved in KBr was used. All infrared spectra show similar absorption bands for the strains studied with the most important absorption bands located at 2930 cm-1 (CH), 1653 cm-1 (AmI), 1541 cm-1 (AmII) and two bands at 1236 cm-1 and 1082 cm-1, which were assigned to phosphate and sugar groups. However, calculation of absorption band ratios normalized with respect to the integrated intensity of the CH stretching region around 2930 cm-1, show significant differences between the strains. Both Streptococcus mitis strains possess high AmI/CH and AmII/CH absorption band ratios compared to the other strains. Streptococcus salivarius HBC12, a mutant strain devoid of all proteinaceous surface appendages, shows significantly lower AmI/CH and AmII/CH band ratios with respect to its parent strain S. salivarius HB. Two positive relationships could be established both between the AmII/CH absorption band ratio and the N/C elemental surface concentration ratio of the strains previously, determined from X-ray photoelectron spectroscopy (XPS) and also between AmI/CH and the fraction of carbon atoms at the surface involved in amide bonds, determined by XPS as well. From this comparison, it is concluded that transmission infrared spectroscopy can be employed as a technique to study the molecular surface composition of freeze-dried microorganisms.  相似文献   

6.
Spectroscopic evidence is presented for the lack of intramolecular hydrogen bonding in a simple peptide derivative of 5,5-dimethylthiazolidine-4-carboxylic acid (Dtc). The infrared spectrum of Boc-Pro-Ile-OMe 1 in nonpolar solvents displays two N-H stretching bands at 3419 and 3330 cm-1 in CCl4 and one at 3417 and 3328 cm-1 in CHCl3. The low frequency band at 3328-3330 cm-1 may be assigned to conformations with an intramolecular hydrogen bond between the Ile N-H and Boc C = O. The band at 3417-3419 cm-1 is the normal Ile N-H stretch. In the polar solvent CH3CN only one NH stretching band at 3365 cm-1 is observed. The IR spectrum of Boc-Dtc-Ile-OMe 2, on the other hand, displays one N-H stretching band at 3423 cm-1 in CCl4 and one at 3418 cm-1 in CHCl3. The IR spectrum of 2 does not display the N-H stretching band that would arise from intramolecular hydrogen bonding between the Boc C = O and Ile N-H. The lack of intramolecular hydrogen bonding for Boc-Dtc-Ile-OMe 2 was evident also in the NMR spectra in nonpolar solvents. The 1H-NMR spectrum of the Pro dipeptide 1 in 50% CDCl3/C6D6 at 20 degrees displayed two Ile-NH signals at 6.58 and 7.74 ppm. The latter signal corresponds to the intramolecularly hydrogen bonded Ile-NH in the trans-Boc isomer of 1 (60% of the total population), while the former signal corresponds to the nonhydrogen bonded Ile-NH in the cis-Boc isomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Normal modes of vibration of DNA in the low-frequency region (10-300 cm-1 interval) have been identified from Raman spectra of crystals of B-DNA [d(CGCAAATTTGCG)], A-DNA [r(GCG)d(CGC) and d(CCCCGGGG)], and Z-DNA [d(CGCGCG) and d(CGCGTG)]. The lowest vibrational frequencies detected in the canonical DNA structures--at 18 +/- 2 cm-1 in the B-DNA crystal, near 24 +/- 2 cm-1 in A-DNA crystals, and near 30 +/- 2 cm-1 in Z-DNA crystals--are shown to correlate well with the degree of DNA hydration in the crystal structures, as well as with the level of hydration in calf thymus DNA fibers. These findings support the assignment [H. Urabe et al. (1985) J. Chem. Phys. 82, 531-535; C. Demarco et al. (1985) Biopolymers 24, 2035-2040] of the lowest frequency Raman band of each DNA to a helix mode, which is dependent primarily upon the degree of helix hydration, rather than upon the intrahelical conformation. The present results show also that B-, A-, C-, and Z-DNA structures can be distinguished from one another on the basis of their characteristic Raman intensity profiles in the region of 40-140 cm-1, even though all structures display two rather similar and complex bands centered within the intervals of 66-72 and 90-120 cm-1. The similarity of Raman frequencies for B-, A-, C-, and Z-DNA suggests that these modes originate from concerted motions of the bases (librations), which are not strongly dependent upon helix backbone geometry or handedness. Correlation of the Raman frequencies and intensities with the DNA base compositions suggests that the complex band near 90-120 cm-1 in all double-helix structures is due to in-plane librational motions of the bases, which involve stretching of the purine-pyrimidine hydrogen bonds. This would explain the centering of the band at higher frequencies in structures containing G.C pairs (greater than 100 cm-1) than in structures containing A.T pairs (less than 100 cm-1), consistent with the strengths of G.C and A.T hydrogen bonding.  相似文献   

8.
The orientation of the protein secondary structures in porin is investigated by Fourier transform infrared (FTIR) linear dichroism of oriented multilayers of porin reconstituted in lipid vesicles. The FTIR absorbance spectrum shows the amide I band at 1,631 cm-1 and several shoulders around 1,675 cm-1 and at 1,696 cm-1 indicative of antiparallel beta-sheets. The amide II is centered around 1,530 cm-1. The main dichroic signals peak at 1,738, 1,698, 1,660, 1,634, and 1,531 cm-1. The small magnitude of the 1,634 cm-1 and 1,531 cm-1 positive dichroism bands demonstrates that the transition moments of the amide I and amide II vibrations are on the average tilted at 47 degrees +/- 3 degrees from the membrane normal. This indicates that the plane of the beta-sheets is approximately perpendicular to the bilayer. From these IR dichroism results and previously reported diffuse x-ray data which revealed that a substantial number of beta-strands are nearly perpendicular to the membrane, a model for the packing of beta-strands in porin is proposed which satisfies both IR and x-ray requirements. In this model, the porin monomer consists of at least two beta-sheet domains, both with their plane perpendicular to the membrane. One sheet has its strands direction lying nearly parallel to the membrane normal while the other sheet has its strands inclined at a small angle away from the membrane plane.  相似文献   

9.
A resonance Raman band involving significantly the iron(III)-histidine stretching (upsilonFe-His) character is identified for metmyoglobin (metMb) through isotope sensitivity of its low-frequency resonance Raman bands, but the identification was not successful for methemoglobin (metHb) and its isolated alpha and beta subunits. A band at 218 cm-1 of natural abundance metMb exhibited a low-frequency shift for 15N-His-labeled metMb (-1.4 cm-1 shift), while the strong porphyrin bands at 248 and 271 cm-1 did not shift significantly. The frequency of the 218-cm-1 band of metMb decreased by 1.6 cm-1 in D2O, probably due to Ndelta-deuteration of the proximal His, in a similar manner to that of the upsilonFe-His band of deoxyMb in D2O. This 218-cm-1 band shifted slightly to a lower frequency in H2(18)O, whereas it did little upon 54Fe isotopic substitution (<0.3 cm-1), presumably because of the six-coordinate structure. The lack of the 54Fe-isotope shift shows that the 218-cm-1 band is specific to metMb and not due to the deoxy species. The intensity of this band decreased for hydroxymetMb and was indiscernible for cyanometMb. For metHb and its alpha and beta subunits, however, the frequencies of the band around 220 cm-1 were not D2O sensitive. These results suggest an assignment of the band around 220 cm-1 to a pyrrole tilting mode, which significantly contains the Fe-His stretching character for metMb but scarcely for metHb and its subunits. The differences in the isotope sensitivity of this band in different proteins are considered to reflect the heme distortion from the planarity and the Fe-His geometry specific to individual proteins.  相似文献   

10.
The effects of alcohols (methanol, ethanol, and n-butanol) on the hydrogen bonding of dipalmitoylphosphatidylcholine (DPPC) were studied by Fourier-transform infrared spectroscopy (FTIR) in water-in-oil (carbon tetrachloride) reversed micelles. The bound O-H stretching mode of water, bonded to DPPC, appeared as a broad band at around 3400 cm-1. The O-H bending mode of this complex appeared as a weak broad band at 1644 cm-1. No free O-H signal was observed. When alcohols were added, a part of DPPC-bound water was replaced by the alcohols. The released 'free' water appeared at 3680 cm-1. This free O-H stretching band represents water-alcohol complex. A new broad band of O-H stretching appeared at 3235 cm-1, which represents the alcohol molecules bound to the phosphate moiety of DPPC. When the alcohol concentration was increased, the intensities of the free O-H stretching and bending bands increased. The P = O- antisymmetric stretching band at 1238 cm-1 became broader and shifted to lower frequencies. This means that alcohols interacted with the phosphate moiety and replaced the bound water. In the deconvoluted spectra of the C = O stretching mode, the ratio between the free sn-2 and the hydrogen-bonded sn-2 bands increased; a part of the bound water at the sn-2 carbon in the glycerol skeleton is also released and the free sn-2 signal increased. From the change in the intensity of the P = O- stretching band, the partition coefficients of alcohols between the phosphate region of DPPC and water were estimated: methanol 7.8, ethanol 16.7 at 22.0 degrees C in mole fraction bases. In molality, these values translates into methanol 0.21 and ethanol 0.45. These results indicate that short-chain alcohols interact with lipid membranes at the phosphate moiety at the hydrophilic head, weaken the membrane-water interaction, and destabilize membranes.  相似文献   

11.
Carbonmonoxy indoleamine 2,3-dioxygenase from rabbit small intestine exhibited two CO stretch bands at 1953 and 1933 cm-1 with half-band widths (delta v 1/2) of both approximately 15 cm-1. Upon addition of an excess amount of L-tryptophan, the substrate, the spectrum changed into that with an intense single band at 1902 cm-1 with the delta v 1/2 of 15 cm-1. Carbonmonoxy L-tryptophan 2,3-dioxygenase of Pseudomonas acidovorans in the absence of L-tryptophan showed a fused CO stretch band which consists of two components at 1965 and 1958 cm-1 (delta v 1/2 for the fused band; 25 cm-1), which was converted into a sharp single band at 1968 cm-1 (delta v 1/2; 10 cm-1) upon addition of excess L-tryptophan. On the other hand, CO complex of rat liver L-tryptophan 2,3-dioxygenase in the absence of L-tryptophan gave a spectrum with a poorly defined peak around 1961 cm-1. By the addition of L-tryptophan, the spectrum changed into that with two distinct bands at 1972 and 1920 cm-1 (delta v 1/2; 6 and 13 cm-1, respectively). These spectra were insensitive to pH in a range where the enzymes were not denatured (neutral to near pH 9). The infrared spectra of the carbonmonoxy enzymes were also affected by the addition of certain effectors such as skatole and alpha-methyl-DL-tryptophan, which facilitate the binding of L-tryptophan to the catalytic site of intestinal and Pseudomonas enzymes, respectively. However, the changes were of different types from those by the saturating amount of L-tryptophan. Possible mechanisms for these phenomena are discussed in relation to the structure of the heme-CO complex in these heme-containing dioxygenases.  相似文献   

12.
A Green's function approach is used in constructing a dynamic model of a semi-infinite length of the DNA homopolymer B poly(d) . poly(d). Considerable attention is focused on the hydrogen bond stretching close to the terminus. A melting (or breathing) coordinate (M) is defined as an average over the three linking hydrogen bond stretches in a unit cell. The thermal mean squared amplitude of (M) is enhanced at the chain end compared with the interior. Spectral branches at 69, 80 and 105 cm-1, as well as a local mode at 75 cm-1, are primary contributors to the enhancement. We suggest that this fact can affect the thermal melting of a DNA double helical homopolymer, enhancing the tendency to start from an end (if one is available). We show how certain infinite chain modes with small (M) amplitude can turn into breathing modes near the terminus, and suggest that the same phenomenon may occur near other specific base-pair sequences. There is also considerable attention paid to the low microwave region from approximately 0 to 1.75 cm-1. The thermally activated modes in this frequency region contribute approximately (0.02 A)2 to [M2(0)] at 40 K, approximately two orders of magnitude greater than for [M2(infinity)]. Most important however, is the existence of narrow resonant modes in this frequency region. Particularly pronounced resonances near 0.03 cm-1 and 0.08 cm-1 (approximately 0.9 and 2.4 GHz) amplify M2(0) at the terminus by about for orders of magnitude over the infinite chain value M2(infinity).  相似文献   

13.
H DeGrazia  D Brown  S Cheung  R M Wartell 《Biochemistry》1988,27(17):6359-6365
Raman spectra from three subfragments of the Escherichia coli lactose promoter region were obtained in 0.1 M NaCl. The three DNAs are 21, 40, and 62 bp in length. The 21 and 62 bp DNAs contain the binding site for the catabolite gene activator protein (CAP). The 40 bp DNA contains the binding site for the lac repressor. A quantitative analysis of Raman band characteristics indicates an overall B-type conformation for these gene regulatory sites. Bands which correspond to A-family (807 cm-1) and B-family (834 cm-1) deoxyribose phosphate vibrations have the same intensities as bands found in heterogeneous DNAs. The spectra of the 21 bp CAP site have, however, a small band at 867 cm-1 and several other small differences similar to some characteristics observed in C-DNA spectra. Several dG nucleosides in the CAP site appear to be altered from the conventional C2'-endo/anti conformation. At 45 degrees C, well below the melting region of these DNAs, small changes occur in the spectra of the 40 bp lac repressor site which are not observed in the other DNAs. A weak band occurs at 705 cm-1, and intensity changes are observed at 497, 682, and 792 cm-1. The changes suggest that the conformations of several dG nucleosides are altered and that a small region may exist with characteristics of an A-family backbone. This conformational change at 45 degrees C coincides with previous NMR observations indicating an enhanced imino proton exchange rate at a GTG sequence within the lac operator site.  相似文献   

14.
The FeIV=O stretching vibration has never been identified for a cysteine-coordinated heme enzyme. In this study, resonance Raman and visible absorption spectra were observed simultaneously for transient species in the catalytic reaction of chloroperoxidase with hydrogen peroxide by using our original apparatus for mixed-flow and Raman/absorption simultaneous measurements. For the first intermediate, the FeIV=O stretching Raman band was observed at 790 cm-1, which shifted to 756 cm-1 with the 18O derivative, but the v4 band was too weak to be identified. This suggested the formation of an oxoferryl porphyrin pi cation radical. The second intermediate gave an intense v4 band at 1,372 cm-1 but no oxygen isotope-sensitive Raman band, suggesting oxygen exchange with bulk water.  相似文献   

15.
The IR spectra of crystalline cytidine (Cyd), ethenocytidine (epsilon Cyd), and their hydrochlorides (Cyd-Hcl and epsilon CyD-HCl) have been analyzed to determine the spectroscopic manifestations of the structural differences that were previously established for these nucleosides from X-ray studies. O,N-Deuteration of the samples turned out to be a successful approach to obtaining interpretable spectra. The analysis was carried out in three frequency ranges: (i) The 2600-1900 cm-1 range originating from the vO-D and VN-D vibrations. All intermolecular hydrogen bonds could be recognized here. The positions of the individual vO-D (vN-D) bands were correlated with the geometrical delta HB parameters presenting the strengths of hydrogen bonds in which these groups act as donors (ii) The 1750-1500 cm-1 region originating from the stretching vibrations of double bonds. All absorption bands in this region were interpreted in terms of electronic structures of the base fragments. (iii) The region of the C-H stretching vibrations of the base fragments (3200-3000 cm-1) and sugar moieties (3000-2800 cm-1). The Csp2-H vibrations also reflect the electronic structures of the base fragments, whereas the vCsp-H frequencies seem to be sensitive to etheno-bridging and to the presence of an intramolecular C6-H...05' hydrogen bond.  相似文献   

16.
A Maeda  J Sasaki  Y J Ohkita  M Simpson  J Herzfeld 《Biochemistry》1992,31(50):12543-12545
In the photoreaction of bacteriorhodopsin, the L intermediate shows an intense band at 3486 cm-1 which is unaffected by 2H2O (Maeda, A., Sasaki, J., Shichida, Y., & Yoshizawa, T. (1992) Biochemistry 31, 462-467]. This band is shifted to 3477 cm-1 by [indole-15N]tryptophan substitution and therefore is assigned to the N-H stretching vibration of the indole of tryptophan. Free indole in carbon tetrachloride shows its N-H stretching vibration at 3491 cm-1 [Fuson, N., Josien, M.-L., Powell, R. L., & Utterback, E. (1952) J. Chem. Phys. 20, 145-152]. Thus, it is suggested that at least one tryptophan residue in the L intermediate is not hydrogen bonded.  相似文献   

17.
The Green's function technique is applied to a study of breathing modes in a DNA double helix which contains a region of different base pairs from the rest of the double helix. The calculation is performed on a G-C helix in the B conformation with four consecutive base pairs replaced by A-T. The average stretch in hydrogen bonds is found amplified around the A-T base pair region compared with that of poly(dG)-poly(dC). This is likely related to the A-T regions lower stability against hydrogen bond melting. The A-T region may be considered to be the initiation site for melting in such a helix.  相似文献   

18.
M Hatanaka  H Kandori    A Maeda 《Biophysical journal》1997,73(2):1001-1006
Linear dichroic difference Fourier transform infrared spectra upon formation of the M photointermediate were recorded with oriented purple membranes. The purpose was to determine the angle of the directions of the dipole moments of 1) the water molecule whose O-H stretching vibration appears at 3643 cm-1 for the unphotolyzed state and 3671 cm-1 for the M intermediate, and 2) the C=O bond of protonated Asp85 in the M intermediate. The angle of 36 degrees we find for the C=O of the protonated Asp85 in the M intermediate is not markedly different from 26 degrees for unprotonated Asp85 in the model based on cryoelectron diffraction, indicating the absence of gross orientation changes in Asp85 upon its protonation. The O-H band at 3671 cm-1 of a water molecule in the M intermediate, although its position has not determined, is fixed almost parallel to the membrane plane. For the unphotolyzed state the angle of the water O-H to the membrane normal was determined to be 60 degrees. On the basis of these data and the structural model, we place the water molecule in the unphotolyzed state at a position where it forms hydrogen bonds with the Schiff base, Asp85, Asp212, and Trp86.  相似文献   

19.
Observations of Raman spectra of various nucleic acids indicate that the guanine ring breathing frequency is sensitive to the internal rotation angle around the glycosidic bond and to the conformation of the five-membered ring of the ribose residue that is directly connected with the guanine residue in question. It is found that 682 cm-1 for C2'-endo-anti, at 665 cm-1 for C3'-endo-anti, and at 625 cm-1 for C3'-endo-syn. A DNA octamer d(GpGpApApTpTpCpC) shows, in its aqueous solution, a broad Raman band at 680 cm-1 with a tail at 670 cm-1. This fact suggests that the guanosine residues in this oligomer take primarily C2'-endo-anti conformation but an appreciable amount of fluctuation of the ribose ring structure towards C3'-endo is involved.  相似文献   

20.
Fourier transform infrared spectroscopic studies are reported on gramicidin ion-channels in phospholipid bilayers and the effects on the spectra of the anesthetics and related compounds (methoxyflurane, halothane, chloroform, carbon tetrachloride, n-pentane and n-decane) have been determined. The addition of anesthetics containing the 'acidic hydrogen' caused unique changes particularly on the amide I bands at 1639 cm-1 and 1670 cm-1. The 1639 cm-1 band became more intense while the intensity near 1670 cm-1 decreased dramatically. These effects were not observed with carbon tetrachloride, n-pentane and n-decane. The 1670 cm-1 band is interpreted as arising from the carbonyls involved in the head-to-head hydrogen-bonded dimerization where the relationship between chains is analogous to that of the antiparallel beta-pleated sheet structure and the anesthetics with 'acidic hydrogens' are considered to disrupt the hydrogen-bonded dimerization by competitive hydrogen bonding to the carbonyls at the head-to-head junction. As the dimer-monomer equilibrium is the 'on-off' mechanism for gramicidin ion-channel conductance, the results are considered in terms of the mechanism of action of anesthetics and are taken to suggest, for certain anesthetics, a hydrogen-bonding role to protein ion-channel components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号