共查询到20条相似文献,搜索用时 15 毫秒
1.
Some aspects of vulnerability to cyclopoid predation of zooplankton prey individuals 总被引:2,自引:0,他引:2
Kennedy Roche 《Hydrobiologia》1990,198(1):153-162
The predation cycle (encounter, attack, capture and ingestion or survival) by adult female Acanthocyclops robustus was observed for four crustacean prey types. The chief defense of A. robustus nauplii was escape response ability, reducing the probability of capture after attack, and, most likely, attack after encounter. The most important feature reducing the vulnerability of Ceriodaphnia and Daphnia species was large body size, decreasing the probability of capture after attack. Escape response ability and carapace strength/integrity further reduced vulnerability. Carapace strength/integrity was an effective defense for Bosmina longirostris, reducing the probability of ingestion after capture.The predation cycle by juvenile A. robustus was examined for three prey types. All three prey types seemed to be readily attacked. Due to their possession of loricae, Keratella cochlearis and Pompholyx sulcata were seldom eaten, while the illoricate Synchaeta kitina was highly vulnerable.Egg vulnerability after attack by the adult female predator was analysed. The eggs of Brachionus calyciflorus, Pompholyx sulcata and Filinia longiseta were rarely eaten, although the adults of the latter were usually ingested (thus causing the eggs to float free). Out of three attacks recorded on Keratella Quadrata, the eggs were eaten (or destroyed) twice.Handling times by the adult female predator were measured for a number of prey types. The shortest mean handling time was for Synchaeta kitina (less than one second), while the longest was on Ceriodaphnia species (716 seconds). Results were quite variable. Handling time was significantly positively related to prey body volume, while exoskeletal strength/integrity also increased this time. No effect of temperature on handling time was found for Synchaeta pectinata or Polyarthra major between 15 and 26.5 °C. 相似文献
2.
Dennis L. Murray 《The Journal of animal ecology》2002,71(4):614-625
3.
In the shallow and eutrophic subtropical aquatic ecosystems, which it generally inhabits, the omnivorous copepod Mesocyclops thermocyclopoides encounters a wide variety of animal prey types including ciliates, rotifers, and cladocerans. We studied prey selectivity in laboratory-reared adult females of this species given a choice of (i) prey types belonging to different taxa (ciliates, rotifers, cladocerans, and cyclopoid nauplii), and (ii) different prey species within a taxonomic group differing in body size, morphology or behaviour. We also tested the effect of different proportions of prey species on its selectivity. Prey type proportion had no significant effect on selectivity of the copepod, nor was there any evidence of switching based on the relative abundance of prey. Among the ciliate prey species tested, the largest species, Stylonychia mytilus was positively selected regardless of its relative abundance, while the smallest, S. notophora was selected only when its density was higher. Offered a choice of three species of a brachionid rotifer differing in size, the copepod selected the largest of them, Brachionus calyciflorus, and avoided the smallest B. angularis. The evasive rotifer Hexarthra mira was also avoided. When prey choice included three cladoceran species Daphnia similoides, Moina macrocopa and Ceriodaphnia cornuta, the copepod selected the intermediate-sized M. macrocopa regardless of the abundance of the other two species. Although it fed on Mesocyclops nauplii when there was no choice, M. thermocyclopoides avoided them when alternative food was available. In a multispecies prey choice test, the copepod selected predominantly the rotifer B. calyciflorus and the cladoceran M. macrocopa. We suggest that the prey selectivity patterns shown by M. thermocyclopoides are adaptive in that they lead to ingestion of the most profitable prey. 相似文献
4.
Differential vulnerability to predation and refuge use in competing larval salamanders 总被引:1,自引:0,他引:1
Susan C. Walls 《Oecologia》1995,101(1):86-93
The aquatic larvae of two species of salamanders coexist as a result of differences in their competitive abilities: Ambystoma talpoideum is a superior aggressor, whereas A. maculatum is a superior forager. I examined the behavioral mechanisms that permit these species to coexist with their predatory congener, A. opacum. I asked whether the two prey species differ in their vulnerability to predation and in their use of structural and spatial refugia when under the risk of predation; such inter-specific variation may allow predation to contribute indirectly to prey coexistence. Larval A. maculatum (the superior forager) was more vulnerable to predation by A. opacum than was A. talpoideum, and only the latter species significantly increased its use of structural refugia (leaf litter) in the presence of the predator. In pond enclosures, both species of prey exhibited diel patterns of microhabitat use; significantly more larvae occupied shallow regions of enclosures during the day and migrated to deeper water (a spatial refugium) at night. However, when considered separately, neither (1) the presence of a predatory larval A. opacum nor (2) an increased density of intra- and interspecific competitors significantly altered this habitat shift for either prey species. Rather, diel microhabitat usage in A. talpoideum was significantly affected by an interaction between predator presence and competitor density. My results demonstrate the importance of refugia to coexistence in this predator-prey assemblage. Furthermore, predation by A. opacum may mediate prey competition; that is, preferential consumption of A. maculatum may reduce the competitive impact of this superior forager on A. talpoideum, thus enhancing their coexistence. 相似文献
5.
Piotr I. Krylov 《Hydrobiologia》1992,239(3):131-140
Functional response curves of fourth instar larvae ofChaoborus flavicans preying on two size classes ofDaphnia longispina were examined throughout three summer seasons in a small forest lake. Data for each size class were fitted to Holling's disc equation. The parametersa (attack rate) andTh (handling time) were calculated for each prey size from these curves. Attack rate was greater and handling time was shorter for small (0.77 mm) than for large (1.82 mm)Daphnia. In 1:1 mixture of these prey size classes the predation rates ofChaoborus on smallDaphnia at prey densities above 20 l–1 were greater than predicted from the single size-class experiments. The observed predation rates on largeDaphnia were lower than predicted at all prey densities. Since both single size-class and two size-class experiments were run during the same period of time the difference in observed and predicted predation rates could not be attributed to seasonal changes in prey preference ofChaoborus larvae. In experiments with a concentrated mixture of lake zooplankton (dominated byD. longispina)Chaoborus preference forDaphnia decreased as prey body size increased. There was no obvious correlation between selectivity coefficients and size-frequency distributions ofDaphnia. When medium-sizedDaphnia were omitted from calculations the preference of small over large prey did not differ significantly from the predictions of the single size-class model. 相似文献
6.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities. 相似文献
7.
When juvenile praying mantids (Tenodera sinensis)were exposed to unpalatable prey (the milkweed bug Oncopeltus fasciatus),they attacked, sampled, and then usually rejected the prey. About 70% of the handling time was spent feeding. When offered a second milkweed bug, the mantids usually attacked the prey. However, the overall time required for the mantids to sample, recognize, and then reject the unpalatable prey decreased by half. The proportion of handling time that was spent feeding remained the same as in the first encounter. In contrast, when the second prey individuals encountered by mantids were Drosophila melanogaster,the flies were completely consumed and the proportion of handling time that was spent feeding significantly increased. When praying mantids were exposed to the milkweed bugs for the first time, up to 33% of the bugs survived attack by the mantids. Survival of milkweed bugs increased to 55% when mantids had been previously exposed to the bugs. In contrast, flies that were caught never survived. 相似文献
8.
Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey. 相似文献
9.
10.
It is well known that a predator has the potential to regulate a prey population only if the predator responds to increases in prey density and inflicts greater mortality rates. Predators may cause such density-dependent mortality depending on the nature of the functional and numerical responses. As spiders are usually faced with a shortage of prey, the killing behavior of the spider Nesticodes rufipes at varying densities of Musca domestica was examined here through laboratory functional response experiments where spiders were deprived of food for 5 (well-fed) or 20 days (hungry). An additional laboratory experiment was also carried out to assess handling time of spiders. The number of prey killed by spiders over 24- and 168-h periods of predator–prey interaction was recorded. Logistic regression analyses revealed the type II functional response for both well-fed and hungry spiders. We found that the lower predation of hungry spiders during the first hours of experimentation was offset later by an increase in predation (explained by estimated handling times), resulting in similarity of functional response curves for well-fed and hungry spiders. It was also observed that the higher number of prey killed by well-fed spiders over a 24-h period of spider–prey interaction probably occurred due to their greater weights than hungry spiders. We concluded that hungry spiders may be more voracious than well-fed spiders only over longer time periods, since hungry spiders may spend more time handling their first prey items than well-fed spiders. 相似文献
11.
Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown whether the defence against pathogens induced in the plant also interferes with the indirect defence against herbivores mediated via the third trophic level. We previously showed that infection of plants with Tomato spotted wilt virus (TSWV) increased the developmental rate of and juvenile survival of its vector, the thrips Frankliniella occidentalis. Here, we present the results of a study on the effects of TSWV infections of plants on the effectiveness of three species of natural enemies of F. occidentalis: the predatory mites Neoseiulus cucumeris and Iphiseius degenerans, and the predatory bug Orius laevigatus. The growth rate of thrips larvae was positively affected by the presence of virus in the host plant. Because large larvae are invulnerable to predation by the two species of predatory mites, this resulted in a shorter period of vulnerability to predation for thrips that developed on plants with virus than thrips developing on uninfected plants (4.4 vs. 7.9 days, respectively). Because large thrips larvae are not invulnerable to predation by the predatory bug Orius laevigatus, infection of the plant did not affect the predation risk of thrips larvae from this predator. This is the first demonstration of a negative effect of a plant pathogen on the predation risk of its vector. 相似文献
12.
The nemertean, Cerebratulus lacteus Verrill (Nemertinea: Heteronemertini), has been identified as an important threat to soft-shell clam (Mya arenariaL.) populations in Atlantic Canada. The biology of this species, however, is still largely unknown. Field and laboratory studies were undertaken in 1998 and 1999 in Prince Edward Island, Canada, to test certain control measures to reduce predation on soft-shell clam populations and to better describe the relationship between C. lacteus and M. arenaria. Field abundance of C. lacteus, M. arenaria and Nereis virens Sars were evaluated in relation to particular habitat modifications that were used as control measures. Sediment manipulations tested were: (1) addition of shells and (2) use of a hydraulic rake. No difference was observed on the abundance of C. lacteus, M. arenaria and N. virens after treatments were applied. In the laboratory, C. lacteus was shown to be an efficient predator of M. arenaria. Clam mortalities reached 100% in the presence of C. lacteus while 0% mortality was observed in its absence. A complementary set of experiments was carried out to see if the sympatric polychaetes N. virens and Glycera dibranchiata Ehlers had any impact on the relationship between C. lacteus and M. arenaria. N. virens showed no impact on C. lacteus predation on clams. The presence of G. dibranchiata significantly reduced the nemertean predation rate. Analysis of clam size selection revealed no significant preference by C. lacteus. Other experimental studies revealed that high predator densities did not impede predation on clams and that C. lacteus preferred soft-shell clams among other commercial bivalve species presented (Mercenaria mercenariaL., Crassostrea virginica Gmelin and Mytilus edulisL.). This study should provide a better understanding of the relationship between C. lacteus and M. arenaria and lead to the development of improved nemertean control measures. 相似文献
13.
Bluegill sunfish (Lepomis macrochirus) are known to diversify into two forms specialized for foraging on either limnetic or littoral prey. Because juvenile bluegills seek vegetative cover in the presence of largemouth bass (Micropterus salmoides) predators, natural selection should favor the littoral body design at size ranges most vulnerable to predation. Yet within bluegill populations, both limnetic and littoral forms occur where vegetation and predators are present. While adaptive for foraging in different environments, does habitat-linked phenotypic variation also influence predator evasiveness for juvenile bluegills? We evaluate this question by quantifying susceptibility to predation for two groups of morphologically distinct bluegills; a limnetic form characteristic of bluegills inhabiting open water areas (limnetic bluegill) and a littoral form characteristic of bluegills inhabiting dense vegetation (littoral bluegill). In a series of predation trials, we found that bluegill behaviors differed in open water habitat but not in simulated vegetation. In open water habitat, limnetic bluegills formed more dense shoaling aggregations, maintained a larger distance from the predator, and required longer amounts of time to capture than littoral bluegill. When provided with simulated vegetation, largemouth bass spent longer amounts of time pursuing littoral bluegill and captured significantly fewer littoral bluegills than limnetic fish. Hence, morphological and behavioral variation in bluegills was linked to differential susceptibility to predation in open water and vegetated environments. Combined with previous studies, these findings show that morphological and behavioral adaptations enhance both foraging performance and predator evasiveness in different lake habitats. 相似文献
14.
The predation rate and selection of specific prey byMysis relicta in Lake Tahoe depends on both the total and the relative densities of prey classes. Functional responses of mysids to changes in the density of two species of calanoid copepod prey were curvilinear in laboratory experiments. In the field and in 2-prey treatments, preference was usually positive forEpischura and negative forDiaptomus. However, the preference forEpischura was greatest at the lowest combined densities of prey in the laboratory and decreased at densities >100Epischura / m3 in the field. Several hypotheses to explain the inverse relationship between selectivity and prey density are discussed. Field assemblages of prey vary vertically, horizontally and seasonally. Potential effects of this hetrogeneity on both predator and prey populations are examined. 相似文献
15.
We measured the fecal pellet production rate (FPR) of a cyclopoid copepod (Cyclops cf. sibiricus) individually through the copepodite 5th stage in order to describe the molt-cycle dependent variations in the FPR and the relationship between the FPR and growth and development. Even though individuals of C.cf. sibirucus were kept in the same environmental condition (food quantity, etc.) throughout the development, the FPR was not constant. In general, the FPR was low just after molting into C5, but increased with time and reached the maximum a few days after the molt, and then decreased toward the next molt. More fecal pellets were produced during the earlier part of stage duration time, irrespective of variations in the stage duration time. The total volume of fecal pellets voided through C5 (tCFP) also varied individually with females tending to void more than males. However, neither the weight-specific FPR nor the weight-specific tCFP were different between the sexes. The weight-specific FPR was positively correlated with the individual stage-specific growth rate, suggesting that better growers had a higher ingestion rate, given that the FPR is proportional to the ingestion rate as suggested by other studies. 相似文献
16.
Laboratory cages were used to evaluate the influence of extraguild (EGprey) and intraguild prey (IGprey) densities on the direction, symmetry and magnitude of the intraguild predation (IGP) of the aphidophagous Harmonia axyridis Pallas on Coccinella undecimpunctata L. and vice versa. In order to understand the role of competition between IGprey, the experiments included treatments with one IGpredator, with one or four IGprey and EGprey (Aphis fabae Scopoli) ranging from zero to sufficient aphids to satiate the predators for 12, 24 or 48 h. Increases in EGprey and IGprey densities did not alter the direction, but decreased the magnitude and symmetry of IGP. Predation on one individual of IGprey decreased from more than 80%, in the absence of EGprey, to from 6% to 53%, at higher EGprey densities. Decrease in IGP was less when H. axyridis was the IGpredator. Even at high EGprey densities, eggs and 2nd larval stages of C. undecimpunctata were vulnerable to IGP and the level of predation was 40% and 53%. The presence of more than one IGprey increased the magnitude of IGP mainly at EGprey densities sufficient to satiate the predators for 12 and 24 h, suggesting that competition between the IGpredator and IGprey may be one of the processes promoting IGP. These results and those of other authors suggest that H. axyridis has the potential to be an IGpredator, mainly of the most vulnerable stages of IGprey. Thus, H. axyridis may negatively affect the survival of C. undecimpunctata, when these two species exploit the same resources. 相似文献
17.
The possibility that resource limits constrain the growth of mobile epifaunal populations associated withSargassum patens plants was investigated by placing plants and associated animals into field microcosms which excluded fish predators, and then comparing faunal abundance and size-structure changes in different microcosm treatments with field populations. Four different micrososm treatments were set up: two treatments containing defaunated plants inoculated with caprellid amphipods, and two control treatments with natural faunas. The estimated secondary production of faunas enclosed in all microcosm treatments rapidly settled on a constant value (5 mg/day) which was similar to that determined in experiments conducted in Western Australia using the same microcosms but for faunas associated with a seagrass rather than a macroalga. These results support the hypothesis that the secondary production of epifaunal communities associated with macrophytes is constrained by quantifiable food resource ceilings. Predation by the most common fish species in the area, the wrasseHalichoeres tenuispinis, did not appear to alter macrofaunal production in theS. patens bed; however, it did greatly affect the faunal size-structure by eliminating most of the larger animals. The majority of epifaunal animals 2.0 mm sieve-size were consumed byH. tenuispinis, while negligible numbers of 0.5-mm sieve-size animals were captured. We postulate that food resource ceilings and predatory size-selectivity are widespread phenomena, affecting epifaunal populations at a variety of locations. Predation is predicted to generally increase rather than decrease faunal abundance because the consumption of each large invertebrate by a predator frees sufficient resources to feed several smaller individuals. 相似文献
18.
In order to estimate predation risk in nature, two basic components of predation need to be quantified: prey vulnerability, and density risk. Prey vulnerability can be estimated from clearance rates obtained from enclosure experiments with and without predators. Density risk is a function of predator density, and the spatial and temporal overlap of the predator and prey populations. In the current study we examine the importance of the vertical component of overlap in making accurate estimates of predation risk from the invertebrate predator Mesocyclops edax on rotifer versus crustacean prey. The results indicate that assumptions of uniform predator and prey densities cause a significant underestimation of predation risk for many crustacean prey due to the coincident vertical migration of these prey with the predator. The assumption of uniformity is more reasonable for estimating predation risk for most rotifer prey. 相似文献
19.
In the European Wadden Sea, the nemertine Tetrastemma melanocephalumoccurs together with its prey, the amphipod Corophium arenarium, in the upper intertidal zone. T. melanocephalumleaves the sediment when the tide has receded and captures C. arenarium in its U-shaped burrow. Highest abundances of T. melanocephalumon the sediment surface were found on summer evenings, 2–4 h after high tide, when just a thin film of water was left on the flats. Laboratory Y-maze experiments indicated that gradients of substances produced by C. arenarium in this film of water play a role in tracking the prey. In the field, T. melanocephalum appeared in significantly higher numbers on experimental high density patches of C. arenarium. The amphipod in turn is able to recognize the nemertine. In aquarium experiments, significantly more amphipods escaped from the sediment into the water column when the predator was present. In the field, both predator and prey showed a high mobility by drifting in tidal waters. Benthic abundance maxima of T. melanocephalum and C. arenariumusually did not coincide spatially. It is assumed that the nemertines avoid tidal flats that dry out quickly leaving too little time for prey capture. T. melanocephalum is not able to dig into the sediment, but lives in burrows of Nereis diversicolor. The abundance of this polychaete was inversely related to C. arenarium, presenting a dilemma for T. melanocephalum: the spatial overlap of food and accommodation was rather small. 相似文献
20.
Intraguild predation theory centres on two predictions: (i) for an omnivore and an intermediate predator (IG-prey) to coexist on shared resources, the IG-prey must be the superior resource competitor, and (ii) increasing resource productivity causes the IG-prey''s equilibrium abundance to decline. I tested these predictions with a series of species-rich food webs along New Zealand''s rocky shores, focusing on two predatory whelks, Haustrum haustorium, a trophic omnivore, and Haustrum scobina, the IG-prey. In contrast to theory, the IG-prey''s abundance increased with productivity. Furthermore, feeding rates and allometric considerations indicate a competitive advantage for the omnivore when non-shared prey are considered, despite the IG-prey''s superiority for shared prey. Nevertheless, clear and regular cross-gradient changes in network structure and interaction strengths were observed that challenge the assumptions of current theory. These insights suggest that the consideration of consumer-dependent functional responses, non-equilibrium dynamics, the dynamic nature of prey choice and non-trophic interactions among basal prey will be fruitful avenues for theoretical development. 相似文献