首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The XMAP215/Dis1 MAP family is thought to regulate microtubule plus-end assembly in part by antagonizing the catastrophe-promoting function of kin I kinesins, yet XMAP215/Dis1 proteins localize to centrosomes. We probed the mitotic function of TOGp (human homolog of XMAP215/Dis1) using siRNA. Cells lacking TOGp assembled multipolar spindles, confirming results of Gergely et al. (2003. Genes Dev. 17, 336-341). Eg5 motor activity was necessary to maintain the multipolar morphology. Depletion of TOGp decreased microtubule length and density in the spindle by approximately 20%. Depletion of MCAK, a kin I kinesin, increased MT lengths and density by approximately 20%, but did not disrupt spindle morphology. Mitotic cells lacking both TOGp and MCAK formed bipolar and monopolar spindles, indicating that TOGp and MCAK contribute to spindle bipolarity, without major effects on MT stability. TOGp localized to centrosomes in the absence of MTs and depletion of TOGp resulted in centrosome fragmentation. TOGp depletion also disrupted MT minus-end focus at the spindle poles, detected by localizations of NuMA and the p150 component of dynactin. The major functions of TOGp during mitosis are to focus MT minus ends at spindle poles, maintain centrosome integrity, and contribute to spindle bipolarity.  相似文献   

2.
MCAK, a member of the kinesin-13 family, is a microtubule (MT) depolymerase that is necessary to ensure proper kinetochore MT attachment during spindle formation. Regulation of MCAK activity and localization is controlled in part by Aurora B kinase at the centromere. Here we analyzed human cells depleted of the ubiquitous Ca(2+)/calmodulin-dependent protein kinase IIgamma isoform (CaMKIIgamma) by RNA interference and found that CaMKIIgamma was necessary to suppress MCAK depolymerase activity in vivo. A functional overlap with TOGp, a MT regulator known to counteract MCAK, was suggested by similar CaMKIIgamma- and TOGp-depletion phenotypes, namely disorganized multipolar spindles. A replicating vector system, which permits inducible overexpression in cells that simultaneously synthesize interfering short hairpin RNAs, was used to dissect the functional interplay between CaMKIIgamma, TOGp, and MCAK. Our results revealed two distinct but functionally overlapping mechanisms for negative regulation of the cytosolic/centrosomal pool of MCAK. These two mechanisms, involving CaMKIIgamma and TOGp, respectively, are both essential for spindle bipolarity in a normal physiological context, but not in MCAK-depleted cells.  相似文献   

3.
Although the microtubule-depolymerizing KinI motor Kif2a is abundantly expressed in neuronal cells, we now show it localizes to centrosomes and spindle poles during mitosis in cultured cells. RNAi-induced knockdown of Kif2a expression inhibited cell cycle progression because cells assembled monopolar spindles. Bipolar spindle assembly was restored in cells lacking Kif2a by treatments that altered microtubule assembly (nocodazole), eliminated kinetochore-microtubule attachment (loss of Nuf2), or stabilized microtubule plus ends at kinetochores (loss of MCAK). Thus, two KinI motors, MCAK and Kif2a, play distinct roles in mitosis, and MCAK activity at kinetochores must be balanced by Kif2a activity at poles for spindle bipolarity. These treatments failed to restore bipolarity to cells lacking the activity of the kinesin Eg5. Thus, two independent pathways contribute to spindle bipolarity, with the Eg5-dependent pathway using motor force to drive spindle bipolarity and the Kif2a-dependent pathway relying on microtubule polymer dynamics to generate force for spindle bipolarity.  相似文献   

4.
Astral microtubules (MTs) are known to be important for cleavage furrow induction and spindle positioning, and loss of astral MTs has been reported to increase cortical contractility. To investigate the effect of excess astral MT activity, we depleted the MT depolymerizer mitotic centromere-associated kinesin (MCAK) from HeLa cells to produce ultra-long, astral MTs during mitosis. MCAK depletion promoted dramatic spindle rocking in early anaphase, wherein the entire mitotic spindle oscillated along the spindle axis from one proto-daughter cell to the other, driven by oscillations of cortical nonmuscle myosin II. The effect was phenocopied by taxol treatment. Live imaging revealed that cortical actin partially vacates the polar cortex in favor of the equatorial cortex during anaphase. We propose that this renders the polar actin cortex vulnerable to rupture during normal contractile activity and that long astral MTs enlarge the blebs. Excessively large blebs displace mitotic spindle position by cytoplasmic flow, triggering the oscillations as the blebs resolve.  相似文献   

5.
Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs). We find that the kinase Aurora A and two kinesins, MCAK and Kif18b, are essential for bipolar spindle assembly in EICs and in cells with reduced Eg5 activity. Aurora A promotes bipolar spindle assembly by phosphorylating Kif15, hereby promoting Kif15 localization to the spindle. In turn, MCAK and Kif18b promote bipolar spindle assembly by destabilizing the astral MTs. One attractive way to interpret our data is that, in the absence of MCAK and Kif18b, excessive astral MTs generate inward pushing forces on centrosomes at the cortex that inhibit centrosome separation. Together, these data suggest a novel function for astral MTs in force generation on spindle poles and how proteins involved in regulating microtubule length can contribute to bipolar spindle assembly.  相似文献   

6.
The KinI kinesin MCAK is a microtubule depolymerase important for governing spindle microtubule dynamics during chromosome segregation. The dynamic nature of spindle assembly and chromosome-microtubule interactions suggest that mechanisms must exist that modulate the activity of MCAK, both spatially and temporally. In Xenopus extracts, MCAK associates with and is stimulated by the inner centromere protein ICIS. The inner centromere kinase Aurora B also interacts with ICIS and MCAK raising the possibility that Aurora B may regulate MCAK activity as well. Herein, we demonstrate that recombinant Aurora B-INCENP inhibits Xenopus MCAK activity in vitro in a phosphorylation-dependent manner. Substituting endogenous MCAK in Xenopus extracts with the alanine mutant XMCAK-4A, which is resistant to inhibition by Aurora B-INCENP, led to assembly of mono-astral and monopolar structures instead of bipolar spindles. The size of these structures and extent of tubulin polymerization in XMCAK-4A extracts indicate that XM-CAK-4A is not defective for microtubule dynamics regulation throughout the cytoplasm. We further demonstrate that the ability of XMCAK-4A to localize to inner centromeres is abolished. Our results show that MCAK regulation of cytoplasmic and spindle-associated microtubules can be differentiated by Aurora B-dependent phosphorylation, and they further demonstrate that this regulation is required for bipolar meiotic spindle assembly.  相似文献   

7.
During cell division, interaction between kinetochores and dynamic spindle microtubules governs chromosome movements. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator of mitotic spindle assembly and dynamics. However, the regulatory mechanisms underlying its depolymerase activity during the cell cycle remain elusive. Here, we showed that PLK1 is a novel regulator of MCAK in mammalian cells. MCAK interacts with PLK1 in vitro and in vivo. The neck and motor domain of MCAK associates with the kinase domain of PLK1. MCAK is a novel substrate of PLK1, and the phosphorylation stimulates its microtubule depolymerization activity of MCAK in vivo. Overexpression of a polo-like kinase 1 phosphomimetic mutant MCAK causes a dramatic increase in misaligned chromosomes and in multipolar spindles in mitotic cells, whereas overexpression of a nonphosphorylatable MCAK mutant results in aberrant anaphase with sister chromatid bridges, suggesting that precise regulation of the MCAK activity by PLK1 phosphorylation is critical for proper microtubule dynamics and essential for the faithful chromosome segregation. We reasoned that dynamic regulation of MCAK phosphorylation by PLK1 is required to orchestrate faithful cell division, whereas the high levels of PLK1 and MCAK activities seen in cancer cells may account for a mechanism underlying the pathogenesis of genomic instability.  相似文献   

8.
Chromosome segregation relies on the dynamic properties of spindle microtubules (MTs). Poleward MT flux contributes to spindle dynamics through the disassembly of MT minus ends at spindle poles coupled to the continuous poleward transport of spindle MTs. Despite being conserved in metazoan cells, the function of flux remains controversial because flux rates differ widely in different cell types. In meiotic systems, the rate of flux nearly matches that of chromosome movement, but in mitotic systems, flux is significantly slower than chromosome movement. Here, we show that spindles in human mitotic cells depleted of the kinesin-13 proteins Kif2a and MCAK lack detectable flux and that such cells frequently fail to segregate all chromosomes appropriately at anaphase. Elimination of flux reduces poleward chromosome velocity approximately 20%, but does not hinder bipolar spindle assembly, chromosome alignment, or mitotic progression. Thus, mitosis proceeds efficiently in human cells lacking detectable poleward MT flux. These data demonstrate that in human cultured cells, kinetochores are sufficient to effectively power chromosome movement, leading us to speculate that flux is maintained in these cells to fulfill other functional roles such as error correction or kinetochore regulation.  相似文献   

9.
The formation of a functional bipolar mitotic spindle is essential for genetic integrity. In human cells, the microtubule polymerase XMAP215/ch-Tog ensures spindle bipolarity by counteracting the activity of the microtubule-depolymerizing kinesin XKCM1/MCAK. Their antagonistic effects on microtubule polymerization confer dynamic instability on microtubules assembled in cell-free systems. It is, however, unclear if a similar interplay governs microtubule behavior in mammalian cells in vivo. Using real-time analysis of spindle assembly, we found that ch-Tog is required to produce or maintain long centrosomal microtubules after nuclear-envelope breakdown. In the absence of ch-Tog, microtubule assembly at centrosomes was impaired and microtubules were nondynamic. Interkinetochore distances and the lengths of kinetochore fibers were also reduced in these cells. Codepleting MCAK with ch-Tog improved kinetochore fiber length and interkinetochore separation but, surprisingly, did not rescue centrosomal microtubule assembly and microtubule dynamics. Our data therefore suggest that ch-Tog has at least two distinct roles in spindle formation. First, it protects kinetochore microtubules from depolymerization by MCAK. Second, ch-Tog plays an essential role in centrosomal microtubule assembly, a function independent of MCAK activity. Thus, the notion that the antagonistic activities of MCAK and ch-Tog determine overall microtubule stability is too simplistic to apply to human cells.  相似文献   

10.
MCAK is a member of the kinesin-13 family of microtubule (MT)-depolymerizing kinesins. We show that the potent MT depolymerizer MCAK tracks (treadmills) with the tips of polymerizing MTs in living cells. Tip tracking of MCAK is inhibited by phosphorylation and is dependent on the extreme COOH-terminal tail of MCAK. Tip tracking is not essential for MCAK's MT-depolymerizing activity. We propose that tip tracking is a mechanism by which MCAK is preferentially localized to regions of the cell that modulate the plus ends of MTs.  相似文献   

11.
Dynamic microtubules are necessary for proper mitotic spindle assembly and chromosome segregation during mitosis. Members of the kinesin superfamily of molecular motor proteins are important to spindle function. Of particular interest is the Kinesin-13 family member MCAK, which acts to regulate microtubule dynamics during spindle assembly and to ensure proper attachments of chromosomes to spindle microtubules. The unique ability of MCAK to regulate microtubule dynamics makes it a potential target for development of new drugs that alter spindle function. Here, we knocked down MCAK via RNAi in normal and malignant cell lines and found that the two tested malignant cell lines were acutely sensitive to MCAK knockdown, while the tested normal cells were less sensitive. In addition, we looked at the effect of combining MCAK knockdown and drug treatment with paclitaxel or vinblastine to identify spindle assembly defects. We found that MCAK knockdown increased the morphological defects of the microtubule cytoskeleton in HeLa cells caused by anti-microtubule drugs. Our studies support the idea that MCAK would be a good target for new chemotherapeutic development and may be particular useful in combination therapies with currently available anti-microtubule agents.  相似文献   

12.
BACKGROUND: Sister kinetochores must bind microtubules in a bipolar fashion to equally segregate chromosomes during mitosis. The molecular mechanisms underlying this process remain unclear. Aurora B likely promotes chromosome biorientation by regulating kinetochore-microtubule attachments. MCAK (mitotic centromere-associated kinesin) is a Kin I kinesin that can depolymerize microtubules. These two proteins both localize to mitotic centromeres and have overlapping mitotic functions, including regulation of microtubule dynamics, proper chromosome congression, and correction of improper kinetochore-microtubule attachments. RESULTS: We show that Aurora B phosphorylates and regulates MCAK both in vitro and in vivo. Specifically, we mapped six Aurora B phosphorylation sites on MCAK in both the centromere-targeting domain and the neck region. Aurora B activity was required to localize MCAK to centromeres, but not to spindle poles. Aurora B phosphorylation of serine 196 in the neck region of MCAK inhibited its microtubule depolymerization activity. We found that this key site was phosphorylated at centromeres and anaphase spindle midzones in vivo. However, within the inner centromere there were pockets of both phosphorylated and unphosphorylated MCAK protein, suggesting that phosphate turnover is crucial in the regulation of MCAK activity. Addition of alpha-p-S196 antibodies to Xenopus egg extracts or injection of alpha-p-S196 antibodies into cells caused defects in chromosome positioning and/or segregation. CONCLUSIONS: We have established a direct link between the microtubule depolymerase MCAK and Aurora B kinase. Our data suggest that Aurora B both positively and negatively regulates MCAK during mitosis. We propose that Aurora B biorients chromosomes by directing MCAK to depolymerize incorrectly oriented kinetochore microtubules.  相似文献   

13.
Tanenbaum ME  Medema RH 《Chromosoma》2011,120(6):599-607
Efficient spindle assembly involves the generation of spatial cues around chromosomes that locally stabilize microtubule (MT) plus-ends. In addition to the small GTPase Ran, there is evidence that Aurora B kinase might also generate a spatial cue around chromosomes but direct proof for this is still lacking. Here, we find that the Aurora B substrate MCAK localizes to MT plus-ends throughout the mitotic spindle, but its accumulation is strongly reduced on MT plus-ends near chromatin, suggesting that a signal emanating from chromosomes negatively regulates MCAK plus-end binding. Indeed, we show that Aurora B is the kinase responsible for producing this chromosome-derived signal. These results are the first to visualize spatially restricted Aurora B kinase activity around chromosomes on an endogenous substrate and explain how Aurora B could spatially control the dynamics of non-kinetochore MTs during spindle assembly.  相似文献   

14.
Mitosis requires precise control of microtubule dynamics. The KinI kinesin MCAK, a microtubule depolymerase, is critical for this regulation. In a screen to discover previously uncharacterized microtubule-associated proteins, we identified ICIS, a protein that stimulates MCAK activity in vitro. Consistent with this biochemical property, blocking ICIS function in Xenopus extracts with antibodies caused excessive microtubule growth and inhibited spindle formation. Prior to anaphase, ICIS localized in an MCAK-dependent manner to inner centromeres, the chromosomal region located in between sister kinetochores. From Xenopus extracts, ICIS coimmunoprecipitated MCAK and the inner centromere proteins INCENP and Aurora B, which are thought to promote chromosome biorientation. By immunoelectron microscopy, we found that ICIS is present on the surface of inner centromeres, placing it in an ideal location to depolymerize microtubules associated laterally with inner centromeres. At inner centromeres, MCAK-ICIS may destabilize these microtubules and provide a mechanism that prevents kinetochore-microtubule attachment errors.  相似文献   

15.
The human genome has three unique genes coding for kinesin-13 proteins called Kif2a, Kif2b, and MCAK (Kif2c). Kif2a and MCAK have documented roles in mitosis, but the function of Kif2b has not been defined. Here, we show that Kif2b is expressed at very low levels in cultured cells and that GFP-Kif2b localizes predominately to centrosomes and midbodies, but also to spindle microtubules and transiently to kinetochores. Kif2b-deficient cells assemble monopolar or disorganized spindles. Chromosomes in Kif2b-deficient cells show typical kinetochore-microtubule attachments, but the velocity of movement is reduced approximately 80% compared with control cells. Some Kif2b-deficient cells attempt anaphase, but the cleavage furrow regresses and cytokinesis fails. Like Kif2a-deficient cells, bipolar spindle assembly can be restored to Kif2b-deficient cells by simultaneous deficiency of MCAK or Nuf2 or treatment with low doses of nocodazole. However, Kif2b-deficient cells are unique in that they assemble bipolar spindles when the pole focusing activities of NuMA and HSET are perturbed. These data demonstrate that Kif2b function is required for spindle assembly and chromosome movement and that the microtubule depolymerase activities of Kif2a, Kif2b, and MCAK fulfill distinct functions during mitosis in human cells.  相似文献   

16.
Nonredundant functions of Kinesin-13s during meiotic spindle assembly   总被引:3,自引:0,他引:3  
Spatiotemporal control of microtubule depolymerization during cell division underlies the construction and dynamics of mitotic and meiotic spindles. Owing to their potent ability to disassemble microtubules, Kinesin-13s constitute an important class of microtubule destabilizing factors. Unfertilized Xenopus eggs, similar to other metazoan cells, contain the prototypical Kinesin-13 MCAK as well as a second family member, XKIF2. Here, we compare the roles of MCAK and XKIF2 during spindle assembly in Xenopus extracts. We find that although MCAK and XKIF2 have similar localization and biochemical properties, XKIF2 is not required for spindle assembly and, further, cannot substitute for MCAK. Altering dosage of the two kinesins demonstrates that spindle length is exquisitely sensitive to MCAK concentration but not XKIF2 concentration. Finally, we demonstrate that the rate of poleward microtubule flux in Xenopus-extract spindles is unaffected by XKIF2 depletion and is only modestly sensitive to reduction of MCAK action. We suggest that, in contrast to models proposed for mammalian somatic cell and embryonic Drosophila spindles, Kinesin-13s do not play a central role in poleward flux by depolymerizing minus ends. Rather, MCAK, but not XKIF2, plays a central role in regulating dynamic instability of plus ends and controls spindle length by that mechanism.  相似文献   

17.
The microtubule (MT) cytoskeleton orchestrates the cellular plasticity and dynamics that underlie morphogenesis and cell division. Growing MT plus ends have emerged as dynamic regulatory machineries in which specialized proteins—called plus-end tracking proteins (+TIPs)—bind to and control the plus-end dynamics that are essential for cell division and migration. However, the molecular mechanisms underlying the plus-end regulation by +TIPs at spindle and astral MTs have remained elusive. Here, we show that TIP150 is a new +TIP that binds to end-binding protein 1 (EB1) in vitro and co-localizes with EB1 at the MT plus ends in vivo. Suppression of EB1 eliminates the plus-end localization of TIP150. Interestingly, TIP150 also binds to mitotic centromere-associated kinesin (MCAK), an MT depolymerase that localizes to the plus end of MTs. Suppression of TIP150 diminishes the plus-end localization of MCAK. Importantly, aurora B-mediated phosphorylation disrupts the TIP150–MCAK association in vitro. We reason that TIP150 facilitates the EB1-dependent loading of MCAK onto MT plus ends and orchestrates the dynamics at the plus end of MTs.  相似文献   

18.
MCAK, a kinesin related motor protein with microtubule depolymerizing activity, is known to play an important role in spindle assembly and correcting errors in mitotic chromosome alignment. Experiments to determine how cellular levels of the protein are regulated demonstrate that MCAK accumulates during cell cycle progression, reaches a maximum at G2/M phase, and is rapidly degraded by the proteasome during mitosis. Immunofluorescence microscopy further indicates that MCAK largely disappears from kinetochores and spindle poles at the metaphase to anaphase transition. A phosphorylated form of MCAK appears during mitosis and seems to be preferentially degraded, but degradation does not appear to depend on Aurora B, a kinase reported to be involved in regulating the error correcting activity of the protein. These studies indicate that MCAK activity is limited during the latter stages of mitosis by protein degradation, and argue against a role for the protein in anaphase chromosome movement.  相似文献   

19.
To ensure proper spindle assembly, microtubule (MT) dynamics needs to be spatially regulated within the cell. The kinesin-13 MCAK is a potent MT depolymerase with a complex subcellular localization, yet how MCAK spatial regulation contributes to spindle assembly is not understood. Here we show that the far C-terminus of MCAK plays a critical role in regulating MCAK conformation, subspindle localization, and spindle assembly in Xenopus egg extracts. Alteration of MCAK conformation by the point mutation E715A/E716A in the far C-terminus increased MCAK targeting to the poles and reduced MT lifetimes, which induced spindles with unfocused poles. These effects were phenocopied by the Aurora A phosphomimetic mutation, S719E. Furthermore, addition of the kinesin-14 XCTK2 to spindle assembly reactions rescued the unfocused-pole phenotype. Collectively our work shows how the regional targeting of MCAK regulates MT dynamics, highlighting the idea that multiple phosphorylation pathways of MCAK cooperate to spatially control MT dynamics to maintain spindle architecture.  相似文献   

20.
Kinetochores often form merotelic attachments, in which a single kinetochore is attached to microtubules from both spindle poles. These attachments can result in improper chromosome segregation and are a significant source of aneuploidy, a hallmark of cancer. Aurora B kinase and the kinesin-13 microtubule depolymerase mitotic-centromere-associated kinesin (MCAK) are required to release improper microtubule attachments. Aurora B regulates MCAK's activity and localization. We set out to understand why MCAK and Aurora B are more abundant at some metaphase-aligned centromeres but are present at low amounts on most others. We found that members of the Aurora B complex are specifically enriched at merotelic attachment sites. We also found that Aurora B does not require its activity to become enriched at these sites; however, inhibition of Aurora B activity causes a significant increase in the number of merotelic attachments per cell. Aurora B activity enriches MCAK at merotelic attachments and phosphorylates MCAK on residues that regulate its microtubule depolymerase activity. These data demonstrate that proteins that resolve the defect are specifically localized to merotelic attachments, where their enzymatic activities are regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号