首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen consumption, content of several carbohydrate metabolites, and activities of their coupled enzymes were studied in bivalve molluscs with different tolerance to oxygen deficit: Mytilus galloprovincialis Lam. (black morpha) and Anadara Inaequivalvis Br. It has been shown that under conditions of external normoxia the anadara resistance to hypoxia preserves anaerobic orientation of metabolism. Its tissues are distinguished by high activities of malate and lactate dehydrogenases with the decreased content of glucose and the increased level of lactate. In several organs the succinate thiokinase and fumarate reductase reactions are realized, which is indicated by elevated activities of the alanine and aspartate aminotransferases. The anaerobic orientation of protein metabolism is added by a high pool of free amino acids and the elevated urea content in the mollusc tissues. The total orientation of metabolism in the anadara tissues rules out a significant lactate accumulation and determines low requirement of its organism in oxygen.  相似文献   

2.
Summary The effect of restricted oxygen supply on the excretion of metabolites was studied in Pseudomonas acidovorans (DSM 39), P. delafieldii (DSM 64) and a mutant strain of Paracoccus denitrificans unable to accumulate poly-3-hydroxybutanoic acid. Different metabolites were produced at distinct submaximum respiration rates by these strains. These metabolites were, in order of decreasing respiration rates; 2-oxoglutarate, 2-oxo-3-methylbutanoate, cisaconitate, 3-hydroxybutanoate, succinate, hydrogen gas, formate, acetate, butanoate, acetoin, meso- and D,L-2,3-butanediol, and ethanol. Poly-3-hydroxy-butanoic acid (PHB) accumulated intracellularly at almost the same respiration rates at which the excretion of 3-hydroxybutanoate occurred.The production of ethanol, 2,3-butanediol, butanoate, formate, and hydrogen gas indicate the function of enzymes such as ethanol and butanediol dehydrogenases, pyruvate formate lyase, formate hydrogen lyase, and butanoyl-CoA dehydrogenase. These enzymes are not expected to be present in strict aerobes at different degrees of restricted oxygen supply.Excreted metabolites are indicators of the degree to which the oxygen demand of cells is met. On the other hand, a fermentation process designed for the production of a distinct metabolite can be controlled by maintaining the appropriate oxygen supply.  相似文献   

3.
Ammonium nutrition inhibits the growth of many plant species, including Arabidopsis thaliana. The toxicity of ammonium is associated with changes in the cellular redox state. The cellular oxidant/antioxidant balance is controlled by mitochondrial electron transport chain. In this study, we analysed the redox metabolism of frostbite1 (fro1) plants, which lack mitochondrial respiratory chain complex I. Surprisingly, the growth of fro1 plants increased under ammonium nutrition. Ammonium nutrition increased the reduction level of pyridine nucleotides in the leaves of wild‐type plants, but not in the leaves of fro1 mutant plants. The observed higher activities of type II NADH dehydrogenases and cytochrome c oxidase in the mitochondrial electron transport chain may improve the energy metabolism of fro1 plants grown on ammonium. Additionally, the observed changes in reactive oxygen species (ROS) metabolism in the apoplast may be important for determining the growth of fro1 under ammonium nutrition. Moreover, bioinformatic analyses showed that the gene expression changes in fro1 plants significantly overlap with the changes previously observed in plants with a modified apoplastic pH. Overall, the results suggest a pronounced connection between the mitochondrial redox system and the apoplastic pH and ROS levels, which may modify cell wall plasticity and influence growth.  相似文献   

4.
Oncometabolites are defined as small-molecule components (or enantiomers) of normal metabolism whose accumulation causes signaling dysregulation to establish a milieu that initiates carcinogenesis. In a similar manner, we propose the term “gerometabolites” to refer to small-molecule components of normal metabolism whose depletion causes signaling dysregulation to establish a milieu that drives aging. In an investigation of the pathogenic activities of the currently recognized oncometabolites R(-)-2-hydroxyglutarate (2-HG), fumarate, and succinate, which accumulate due to mutations in isocitrate dehydrogenases (IDH), fumarate hydratase (FH), and succinate dehydrogenase (SDH), respectively, we illustrate the fact that metabolic pseudohypoxia, the accumulation of hypoxia-inducible factor (HIFα) under normoxic conditions, and the subsequent Warburg-like reprogramming that shifts glucose metabolism from the oxidative pathway to aerobic glycolysis are the same mechanisms through which the decline of the “gerometabolite” nicotinamide adenine dinucleotide (NAD)+ reversibly disrupts nuclear–mitochondrial communication and contributes to the decline in mitochondrial function with age. From an evolutionary perspective, it is reasonable to view NAD+-driven mitochondrial homeostasis as a conserved response to changes in energy supplies and oxygen levels. Similarly, the natural ability of 2-HG to significantly alter epigenetics might reflect an evolutionarily ancient role of certain metabolites to signal for elevated glutamine/glutamate metabolism and/or oxygen deficiency. However, when chronically altered, these responses become conserved causes of aging and cancer. Because HIFα-driven pseudohypoxia might drive the overproduction of 2-HG, the intriguing possibility exists that the decline of gerometabolites such as NAD+ could promote the chronic accumulation of oncometabolites in normal cells during aging. If the sole activation of a Warburg-like metabolic reprogramming in normal tissues might be able to significantly increase the endogenous production of bona fide etiological determinants in cancer, such as oncometabolites, this undesirable trade-off between mitochondrial dysfunction and activation of oncometabolites production might then pave the way for the epigenetic initiation of carcinogenesis in a strictly metabolic-dependent manner. Perhaps it is time to definitely adopt the view that aging and aging diseases including cancer are governed by a pivotal regulatory role of metabolic reprogramming in cell fate decisions.  相似文献   

5.
The storage of fruits and vegetables under a controlled atmosphere can induce low oxygen stress, which can lead to post‐harvest losses through the induction of disorders such as core breakdown and browning. To gain better understanding of the metabolic response of plant organs to low oxygen, cultured tomato cells (Lycopersicum esculentum) were used as a model system to study the metabolic stress response to low oxygen (0 and 1 kPa O2). By adding 13C labelled glucose, changes in the levels of polar metabolites and their 13C label accumulation were quantified. Low oxygen stress altered the metabolite profile of tomato cells, with the accumulation of the intermediates of glycolysis in addition to increases in lactate and sugar alcohols. 13C label data showed reduced label accumulation in almost all metabolites except lactate and some sugar alcohols. The results showed that low oxygen stress in tomato cell culture activated fermentative metabolism and sugar alcohol synthesis while inhibiting the activity of the TCA cycle and the biosynthesis of metabolites whose precursors are derived from central metabolism, including fluxes to most organic acids, amino acids and sugars.  相似文献   

6.
Oxygen consumption by larvae of five Chironomus species from the Plumosus group belonging to different larval forms was studied. Larvae of C. agilis ( f. l. reductus) were unable to utilize oxygen at its concentrations lower than 1 mg/l. Larvae of C. plumosus ( f. l. plumosus) used oxygen from water at concentrations higher than 0.7 mg/l; pupas of this species and larvae of C. borokensis ( f. l. plumosus) utilized oxygen at concentrations lower than 0.4 mg/l. C. entis and C. muratensis (both-- f. l. semireductus) utilized oxygen from water at its concentrations up to 0.05 mg/l. The lack of correlation between the rate and ability of larvae to use oxygen at low concentrations and the degree of development of processes allows suggesting that these structures are not additional respiratory organs, as is commonly accepted. At the same time, ability of species to inhabit under conditions of oxygen deficiency correlates directly with the size of the processes. Therefore, ventral and lateral processes are suggested to perform a function of excretion of anaerobic metabolism metabolites.  相似文献   

7.
Zearalenone (ZEN) is a fusarotoxin converted predominantly into α‐zearalenol (α‐Zol) and β‐zearalenol (β‐Zol) by hepatic hydroxysteroid dehydrogenases. The feeding of naturally contaminated grains with ZEN was associated with hyperestrogenic and adverse effects on humans and animals. There is a lack of information on the attribution of the toxic effects of these toxins. One wonders if these effects are due to the parent molecule (ZEN) or to its major metabolites (α‐Zol and β‐Zol). Using human Caco‐2 cells, we looked for the molecular mechanisms of toxicity of ZEN, α‐Zol, and β‐Zol. Toxicity effects were studied by MTT viability assay and oxidative stress induction by measuring malondialdehyde (MDA) generation. To check whether the oxidative stress induction was associated to DNA lesions, we looked for DNA fragmentation by means of the Comet and the diphenylamine assays. To specify cell death pathway, we investigated caspase‐3 activation, confirmed by poly(ADP‐ribose) polymerase cleavage and by Bcl‐2 depletion. Our results clearly demonstrated that ZEN as well as its two metabolites presented variable toxic effects. They induced cell death and an increase in MDA generation. These effects were associated to DNA fragmentation as well as caspase‐3 activation. The observed toxic effects seem to be relieved by the metabolism of ZEN into α‐Zol and β‐Zol. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:233–243, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20284  相似文献   

8.
A mathematical model describing the kinetics of the sequential production of lactic acid and xylitol from detoxified-concentrated vine trimming hemicellulosic hydrolysates by Lactobacillus rhamnosus and Debaryomyces hansenii, respectively, was developed from the basic principles of mass balance in two stages considering as main reactions: (1) glucose and xylose consumption by L. rhamnosus; and (2) xylitol and arabitol production by D. hansenii. The model allows to evaluate the yields and productivities under microaerobic and oxygen restricted conditions (in particular the effects caused by purging the oxygen with nitrogen), which were particularly important during the xylose to xylitol bioconversion by yeasts. The model was tested using experimental data obtained from detoxified-concentrated hemicellulosic hydrolysates, after CaCO3 addition in both types of fermentation processes, without purges (microaerobic conditions) or purging oxygen with nitrogen (oxygen-limited conditions) after sampling in order to reduce the oxygen dissolved. L. rhamnosus was removed by microfiltration before adding D. hansenii at the beginning of the second stage. Mass balance-based and logistic functions were successfully applied to develop the model of the system which properly predicts the consumption of sugars as well as the metabolites produced and yields. The dynamics of fermentation were also adequately described by the developed model.  相似文献   

9.
Summary Paecilomyces sp. and Pseudomonas syringae pv myricae (CSA105) were isolated from sediment core of drainage of the pulp and paper mill industry. Fungi and bacteria were applied for treatment of pulp and paper mill effluent in a two-step and three-step fixed film sequential bioreactor containing sand and gravel at the bottom of the reactor for immobilization of microbial cells. Degradation of chlorinated phenols and formation of their metabolites were determined by high performance liquid chromatography. The microbes exhibited significant reduction in colour (88.5%), lignin (79.5%), chemical oxygen demand (87.2%) and phenol (87.7%) in two-step aerobic sequential bioreactor, and colour (87.7%), lignin (76.5%), chemical oxygen demand (83.9%) and phenol (87.2%) in three-step anaerobic-aerobic sequential bioreactor.  相似文献   

10.
Hong  Ming  Mou  Han  Liu  Xiaoyun  Huang  Mingzhi  Chu  Ju 《Bioprocess and biosystems engineering》2017,40(9):1337-1348

Metabolomics analysis is extremely essential to explore the metabolism characteristics of Saccharopolyspora erythraea. The lack of suitable methods for the determination of intracellular metabolites, however, hinders the application of metabolomics analysis for S. erythraea. Acyl-CoAs are important precursors of erythromycin; phosphorylated sugars are intermediate metabolites in EMP pathway or PPP pathway; organic acids are intermediate metabolites in TCA cycle. Reliable determination methods for intracellular acyl-CoAs, phosphorylated sugars, and organic acids of S. erythraea were designed and validated in this study. Using the optimized determination methods, the pool sizes of intracellular metabolites during an erythromycin fermentation process were precisely quantified by isotope dilution mass spectroscopy method. The quantification results showed that the specific erythromycin production rate was positively correlated with the pool sizes of propionyl-CoA as well as many other intracellular metabolites. The experiment under the condition without propanol, which is a precursor of propionyl-CoA and an important substrate in industrial erythromycin production process, also corroborated the correlation between specific erythromycin production rate and intracellular propionyl-CoA pool size. As far as we know, this is the first paper to conduct the metabolomics analysis of S. erythraea, which makes the metabolomics analysis of S. erythraea in the industrial erythromycin production process possible.

  相似文献   

11.
12.
It is well known that oxygen rise greatly facilitated biological evolution. However, the underlying mechanisms remain elusive. Recently, Raymond and Segrè revealed that molecular oxygen allows 1000 more metabolic reactions than can occur in anoxic conditions. From the novel metabolites produced in aerobic metabolism, we serendipitously found that some of the metabolites are signaling molecules that target nuclear receptors. Since nuclear signaling systems are indispensable to superior organisms, we speculated that aerobic metabolism may facilitate biological evolution through promoting the establishment of nuclear signaling systems. This hypothesis is validated by the observation that most (97.5%) nuclear receptor ligands are produced by aerobic metabolism, which is further explained in terms of the chemical criteria (appropriate volume and rather high hydrophobicity) of nuclear receptor ligands that aerobic metabolites are more ready than anaerobic counterparts to satisfy these criteria.  相似文献   

13.
In the previous research we have demonstrated that rats fed on a rickets-inducing diet show increasing citrate levels in kidney and intestinal mucosa. The study of the enzymes related to citrate metabolism has shown that both NAD+-and NADP+-dependent isocitrate dehydrogenases decrease in kidney mitochondria of rachitic rat. The inhibitory effect of Ca2+ and citrate on the activity of the two dehydrogenases has been also investigated; these metabolites behave as competitive inhibitors against Mg2+ both in normal and in rachitic rats.  相似文献   

14.
Low temperature is an environmental stress that affects crop production and quality and regulates the expression of many genes, and the level of a number of proteins and metabolites. Using leaves from pepper (Capsicum annum L.) plants exposed to low temperature (8 °C) for different time periods (1 to 3 d), several key components of the metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were analysed. After 24 h of exposure at 8 °C, pepper plants exhibited visible symptoms characterized by flaccidity of stems and leaves. This was accompanied by significant changes in the metabolism of RNS and ROS with an increase of both protein tyrosine nitration (NO(2) -Tyr) and lipid peroxidation, indicating that low temperature induces nitrosative and oxidative stress. During the second and third days at low temperature, pepper plants underwent cold acclimation by adjusting their antioxidant metabolism and reverting the observed nitrosative and oxidative stress. In this process, the levels of the soluble non-enzymatic antioxidants ascorbate and glutathione, and the activity of the main NADPH-generating dehydrogenases were significantly induced. This suggests that ascorbate, glutathione and the NADPH-generating dehydrogenases have a role in the process of cold acclimation through their effect on the redox state of the cell.  相似文献   

15.
In addition to complexes in the respiratory chain, few dehydrogenases playing key roles in the physiological metabolism in neurons, are able to generate reactive oxygen species (ROS) in mitochondria. One of them is the Krebs cycle enzyme, α-ketoglutarate dehydrogenase (α-KGDH), which is capable of producing superoxide and hydrogen peroxide by the E3 subunit of the enzyme regulated by changes in the NADH/NAD+ ratio. Mutations in the E3 subunit known to be related to diseases in humans were shown to have increased ROS-forming ability. α-Glycerophosphate dehydrogenase (α-GPDH) located on the outer surface of the inner membrane can also generate ROS, which is stimulated by Ca2+. ROS production by α-GPDH is unique as it does not require Ca2+ uptake and it is observed in respiring as well as damaged, bioenergetically incompetent mitochondria. The possible role of ROS generation by these dehydrogenases in brain pathology is discussed in this review.  相似文献   

16.
More and more frequently these days, aquatic ecosystems are being stressed by nutrient enrichment, pollutants, and global warming, leading to a serious depletion in oxygen concentrations. Although a sudden, significant lack of oxygen will result in mortality, fishes can have an acute behavior (e.g., an increase in breathing rate, reduction in swimming frequency) and physiology responses (e.g., increase in oxygen delivery, and reduction in oxygen consumption) to hypoxia, which allows them to maintain normal physical activity. Therefore, in order to shed further light on the molecular mechanisms of hypoxia adaptation in fishes, the authors conduct comparative quantitative proteomics on Pelteobagrus vachelli livers using iTRAQ. The research identifies 511 acute hypoxia‐responsive proteins in P. vachelli. Furthermore, comparison of several of the diverse key pathways studied (e.g., peroxisome pathway, PPAR signaling pathway, lipid metabolism, glycolysis/gluco‐neogenesis, and amino acid metabolism) help to articulate the different mechanisms involved in the hypoxia response of P. vachelli. Data from proteome analysis shows that P. vachelli can have an acute reaction to hypoxia, including detoxification of metabolic by‐products and oxidative stress in light of continued metabolic activity (e.g., peroxisomes), an activation in the capacity of catabolism to get more energy (e.g., lipolysis and amino acid catabolism), a depression in the capacity of biosynthesis to reduce energy consumption (e.g., biosynthesis of amino acids and lipids), and a shift in the aerobic and anaerobic contributions to total metabolism. The observed hypoxia‐related changes in the liver proteome of the fish can help to understand or can be related to the hypoxia‐related response that takes place in similar conditions in the liver or other proteomes of mammals.  相似文献   

17.
Summary Upon addition of excess one carbon metabolites (including serine) bacteria stop growing because of isoleucine starvation. After such treatment stringent bacteria rapidly resume normal growth whereas relaxed mutants remain unable for some time to grow. We show here that this is due to a lack of derepressibility of ilv genes after the starvation period. Results are also presented which show that RNA polymerase structural mutants may be selected among the clones resistant to a mixture of serine, methionine and glycine, in relA -strains. Finally circumstancial evidence suggests that the one carbon metabolism may be involved in a process controlling isoleucine metabolism.Abbreviations: Throughout this work we have represented the mixture of amino acids serine, methionine and glycine (1 mM each) by the letters SMG. Para amino benzoic acid represented by the letters PABA  相似文献   

18.
Effective detection of the abuse of androgenic-anabolic steroids in human and animal sports often requires knowledge of the drug's metabolism in order to target appropriate urinary metabolites. ‘Designer’ steroids are problematic since it is difficult to obtain ethical approval for in vivo metabolism studies due to a lack of a toxicological profile.In this study, the in vitro metabolism of estra-4,9-diene-3,17-dione is reported for the first time. This is also the first study comparing the metabolism of a designer steroid in the three major species subject to sport's doping control; namely the equine, canine and human. In order to allow the retrospective analysis of sample testing data, the use of a high-resolution (HR) accurate-mass Thermo LTQ-Orbitrap LC-MS instrument was employed for metabolite identification of underivatised sample extracts. The full scan HR-LC-MS Orbitrap data was complimented by several further experiments targeted at elucidating more detailed structural information for the most abundant metabolites. These included; HR-LC-MS/MS of the underivatised metabolites, functional group selective chemical derivatisation followed by full scan HR-LC-MS, enzyme inhibition experiments and full scan electron ionization GC-MS analysis of methoxyamine-trimethylsilyl derivatives.The major metabolite detected in all species, and therefore the most suitable candidate for screening of estra-4,9-diene-3,17-dione abuse, was proposed to be an isomer of 17-hydroxy-estra-4,9-dien-3-one. Less significant metabolic pathways in all species included hydroxylation and reduction followed by hydroxylation. Reductive metabolism in the canine was less significant than in the other two species, while the equine was unique in producing a di-reduced metabolite (proposed to be an isomer of estra-4,9-diene-3,17-diol) and also relatively large quantities of d-ring hydroxy and hydroxy-reduced metabolites.  相似文献   

19.
The gene context in microorganism genomes is of considerable help for identifying potential substrates. The C785_RS13685 gene in Herbaspirillum huttiense IAM 15032 is a member of the d‐ altronate dehydratase protein family, and which functions as a d‐ arabinonate dehydratase in vitro, is clustered with genes related to putative pentose metabolism. In the present study, further biochemical characterization and gene expression analyses revealed that l‐ xylonate is a physiological substrate that is ultimately converted to α‐ketoglutarate via so‐called Route II of a non‐phosphorylative pathway. Several hexonates, including d‐ altronate, d‐ idonate and l‐ gluconate, which are also substrates of C785_RS13685, also significantly up‐regulated the gene cluster containing C785_RS13685, suggesting a possibility that pyruvate and d‐ or l‐ glycerate were ultimately produced (novel Route III). On the contrary, ACAV_RS08155 of Acidovorax avenae ATCC 19860, a homologous gene to C785_RS13685, functioned as a d‐ altronate dehydratase in a novel l‐ galactose pathway, through which l‐ galactonate was epimerized at the C5 position by the sequential activity of two dehydrogenases, resulting in d‐ altronate. Furthermore, this pathway completely overlapped with Route III of the non‐phosphorylative l‐ fucose pathway. The ‘substrate promiscuity’ of d‐ altronate dehydratase protein(s) is significantly expanded to ‘metabolic promiscuity’ in the d‐ arabinose, sugar acid, l‐ fucose and l‐ galactose pathways.  相似文献   

20.
Pseudomonas sp., strain S ATCC 43 388 utilizes α-santonin by inducible enzyme system measurable by oxygen uptake. Cells grown on acetate or benzoate show negligible oxygen consumption with α-santonin. However, glucose grown cells show evidence of a rapid induction of santonin utilizing enzyme system indicating the implication of glucose or its metabolites in the regulation of degradation of santonin. As a consequence, growth of strain S on mixtures of glucose and α-santonin occurs at rates higher than on either of the substrates alone. Mutants with lesion in the glucose metabolism, independent of α-santonin degradation, fail to exhibit higher growth rates with the binary substrates. The results infer simultaneous metabolism of substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号