首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为适应昼夜交替所带来的外界环境的变化,大多数生物的生理活动会表现出以24 h为周期的节律性变化,这种现象称为生物节律(又称生物钟)。生物钟紊乱会增加相关代谢性疾病的风险,这些疾病的发展与肠道菌群失调密切相关。肠道菌群即为人体胃肠道内寄生的一定数量和种类的微生物群落。正常情况下,肠道菌群处于平衡状态;但当宿主生物节律受到外界环境干扰时,其肠道菌群稳态也会发生失衡。越来越多的研究显示,肠道菌群的紊乱导致了代谢性疾病的发生。现对生物钟、肠道菌群以及代谢性疾病的关系进行论述,从而为治疗代谢性疾病提供新的策略。  相似文献   

2.
3.
昆虫生物钟分子调控研究进展   总被引:3,自引:2,他引:1  
昆虫生物钟节律的研究是人类了解生物节律的重要途径。昆虫在生理和行为上具有广泛的节律活动,如运动、睡眠、学习记忆、交配、嗅觉等节律活动,其中昼夜活动行为节律的研究广泛而深入。昆虫乃至高等动物普遍具有保守的昼夜节律系统,昼夜生物钟节律主要包括输入系统:用于接受外界光和温度等环境信号并传入核心振荡器,使得生物时钟与环境同步;核心时钟系统:自我维持的昼夜振荡器;输出系统:将生物钟产生的信号传递出去而控制生物行为和生理的节律变化。早期分子和遗传学研究主要关注昼夜节律振荡器的分子机制及神经生物学,阐明了昼夜生物钟节律的主要分子机制及相关神经网络。最近更多的研究关注生物钟信号是如何输入和输出。本文以果蝇运动节律的相关研究为主要内容,围绕生物钟输入系统、振荡器、输出系统这3个组成部分对昆虫生物钟研究进展进行总结。  相似文献   

4.
张洪钧 《生命科学》2020,32(7):683-691
生物钟是机体统筹并协调行为、生理,及生化等过程,确保机体符合每天24小时日夜循环规律的计时机制。外界环境与机体内部生物钟的不同步与失调经常会对健康造成有害的后果。许多动物模型的验证指出生物钟打乱会导致肿瘤、代谢疾病,以及神经退行性疾病的发生。生物钟紊乱与衰老慢病的显著关联提示了生物节律相关干预对多种疾病极具应用潜力,而这些转化应用与发展在老龄化人口快速增长的同时显得更为迫切。由于小鼠与人在代谢速率与认知行为等方面存在极大差异,发展并研究昼行性的非人灵长类模型对节律紊乱相关慢病的干预与临床转化极为重要,同时有助于对时间生物学的进一步理解。  相似文献   

5.
生物钟是机体为适应环境周期性变化而进化出的一种内在机制。保持体内时钟与外界时钟步调一致对健康至关重要,二者不同步(比如作息不规律、时差、分子时钟机制被破坏等)可能导致生物钟紊乱,可表现为睡眠-觉醒周期异常,激素分泌、血压、心率、体温等节律或水平异常,长期紊乱还与代谢性疾病、心血管疾病、肿瘤等常见重大疾病密切相关。为解决长久以来生物钟紊乱无药可医的局面,科学家们在细胞和动物水平对生物钟基因的功能及其在疾病发生、发展中的作用进行了大量的研究,并对数十万计的小分子化合物进行筛选以探索药物调整生物钟的可行性。此外,褪黑素、光照疗法、运动疗法、调整摄食时间、改变食物营养成分等也对生物钟紊乱起到一定的缓解作用。本文将从药物干预和非药物干预两个角度对生物钟紊乱防治策略的研究进展进行综述。  相似文献   

6.
正2017年的诺贝尔生理学或医学奖奖给了发现生物日节律(circadian rhythm)基因和分子机制的研究工作.美国的3位科学家Jeffrey C.Hall,Michael Rosbash和Michael W.Young分享了这一科学界的最高荣誉.这项工作揭示了生物钟的基本运行机制,对了解生命、生命活动,以及生命和环境的相互作用具有重大的理论意义,对指导人类生活和生产活动和治疗相关疾病有重要的应用价值.生物节律,也叫生物钟,是自然界普遍存在的一种  相似文献   

7.
生物体内源性生物钟产生的昼夜节律是以近24 h的节律性振荡对外界环境变化进行的综合性调节反应,其产生的分子基础是生物钟基因及其编码的蛋白质组成的转录-翻译反馈环路,其中生物钟基因可作用于下游钟控基因而调节机体各项生理功能。昼夜节律紊乱、生物钟基因表达改变,与许多疾病包括心血管疾病和消化疾病的发生发展相关,甚至是癌症发生的重要促进因素。对昼夜节律的研究为疾病的预防和治疗提供了新思路。  相似文献   

8.
生物节律是维持生物体各项生理功能内稳态的重要保障,调控重要的日常生物过程和行为.近年来,由于外界环境变化和不良生活方式引起的机体生物节律紊乱已成为导致多种疾病的重要原因,其中节律紊乱与肿瘤发生发展具有密切关联.研究表明,生物节律紊乱通过打破机体的基因表达、代谢方式、免疫应答、神经内分泌和肠道菌群等方面的生理平衡而促进肿...  相似文献   

9.
生物节律(biological rhythm)系统由位于下丘脑视交叉上核的中枢时钟和各种组织的外周时钟组成,负责协调机体生理功能,在维持正常的生命活动中具有重要意义。生物节律系统通过神经体液等方式参与心脏功能调控,而机体生物节律紊乱与心血管疾病发生密切相关。近年来,大量研究表明心肌缺血再灌注损伤(myocardial ischemia-reperfusion injury)程度具有明显的昼夜差异,缺血再灌注损伤后心脏的不良重构和功能障碍与生物节律钟基因相关,但其确切机制尚未明确。因此,本文就生物节律钟基因在心肌缺血再灌注损伤发生机制中的作用进行综述,为探索心肌缺血再灌注损伤的防治新策略提供理论依据。  相似文献   

10.
生物钟现象是一种普遍存在于生物界细胞的内源节律性保持机制。生物钟机制的存在可以使生物体的代谢行为产生并维持以24 h为周期的昼夜节律,从而更好地适应于地球自转所产生的环境条件昼夜间节律性变化。蓝藻是目前生物钟分子机制研究中的模式生物,其依赖于k ai基因家族成员的核心生物钟调控模式已经被众多研究者详细阐明。蓝藻生物钟的核心振荡器是由蓝藻k aiA/B/C的编码产物来调控的,Kai蛋白的表达模式具有节律性。KaiC蛋白磷酸化状态的节律性循环及输入、输出途径相关组成蛋白的翻译后修饰状态节律性循环共同组成其反馈回路,负责维持生物钟节律性振荡的持续进行并与环境周期保持同步。传统的蓝藻生物钟分子机制模型认为,节律性表达基因翻译产物的转录/翻译负反馈抑制环是生物节律性维持和输出的关键。遗憾的是,在其它物种生物钟分子机制研究中未发现由kai基因家族成员同源基因组成的节律性标签,这表明以k aiA/B/C为核心振荡器的生物钟系统并不是一种跨物种保守的生物钟系统。近期,人们发现非转录/翻译依赖的振荡器(NTO)也具有成为生物节律性产生和维持的“源动力”的可能。过氧化物氧化还原酶(PRX)氧化还原状态节律性是第一种被报道的跨物种保守的NTO节律性标签,这也日渐成为蓝藻生物钟分子机制研究新的热点。  相似文献   

11.
为阐明γ-氨基丁酸(γ-aminobutyric acid,GABA)和生物节律调控的关系,本文以GABA合成(谷氨酸脱羧酶gad等)和代谢(GABA转氨酶GABA-T/pop2、谷氨酸脱氢酶gdh等)突变体,以拟南芥叶片节律性运动为监测指标,探讨了GABA代谢与叶片节律性运动的关系。结果显示,GABA合成突变体(gad1-3)和双突变体gad1/gad2中叶片节律性运动的振幅低于野生型,在gad1、gad2和gad1/gad2中叶片运动的振幅变化明显;pop2突变体中,叶片运动的节律性变化的振幅明显低于对照,gdh1/gdh2突变体中,叶片运动呈现非节律性变化的特点;此外,外源γ-氨基丁酸(1.0 mmol·L-1)不同程度提高拟南芥3种生态型(Col、Ler、Ws)叶片节律性运动的振幅,其中Col生态型和Ws生态型叶片振幅变化明显;在生物钟核心基因突变体toc1、lhy、cca1中,叶片运动呈现非节律性变化模式;但外源GABA的添加能够提高这些突变体叶片节律性运动的振幅或者恢复叶片的节律性。上述结果表明GABA代谢平衡直接和间接影响生物钟节律,外源或内源GABA的合成或代谢突变主要影响到叶片节律性运动的振幅。  相似文献   

12.
近日节律是生物节律中最重要的一种。它是一种以近似24 h为周期的自主振荡器,普遍存在于生物界中。近日节律主要受生物钟基因的调控,在哺乳动物中已发现时钟基因(Clock)、周期基因(Period,Per)家族、隐花色素基因(Cryptochrome1,Cry)家族、Bmal1(Brain and muscle ARNT-like 1)在内的多种重要的生物钟基因。这些基因及其蛋白质产物构成的反馈调节环是生物钟运行的分子基础。研究表明,生物钟基因不仅仅在近日节律的中枢系统中存在表达,在外周组织中也存在表达。而且生物钟基因与哺乳动物生殖密切相关,提示可能在生殖领域中具有重要的调控作用。主要从几个关键生物钟基因的发现、在近日节律和非近日节律中的调节作用、以及与哺乳动物生殖的关系做一综述。  相似文献   

13.
关于生物钟调节机体各项生理机能的研究引起了人们极大的兴趣,随着研究的不断深入,近年来从分子生物学的水平已经发现多种神经介质,如去甲肾上腺素(NE)、多巴胺(DA)、乙酰胆硷(ACh)和鸦片肽等的代谢,在每日24小时中也发生规律性周期变化。中枢神经介质作为神经调节中重要信息物质,自突触前释放后首先与其相应受体发生特异性的相互作用,进而激发细胞内一系列环节而最后发挥其生理功能。因此,伴随神经介质代谢的生物节律变化,是否同时发生受体的节律性变化,成为一个吸引人的问题。美国国立精神卫生研究院的Naber等人对此曾进行了大量的研究工作。他们曾报告过NE α和β受体  相似文献   

14.
生物节律系统作为生物体的基本系统之一在稳态维持、新陈代谢、睡眠与觉醒和癌症的发生与治疗等生理及病理领域发挥了重要影响。而针对节律调节机制本身的研究也是生物研究的热点领域之一。作为生物研究的"新大陆",非编码RNA(nc RNA)与节律系统和核心节律基因的相互作用日益为人所重视,已成为时间生物学领域最具潜力的研究课题之一。将综合国内外对非编码RNA与生物钟相互作用的研究现状,对参与其中的非编码RNA成员和机制做逐一综述。  相似文献   

15.
内源褪黑素对人类和其他哺乳动物的节律行为具有调控功能。生物节律是自然进化赋予生命的基本特征之一,生物体的生命活动受到生物节律的控制与影响。在哺乳动物中,节律调控中心是松果体,其主要功能是合成和分泌褪黑素。褪黑素广泛参与生物体节律行为的调节,本文从褪黑素的产生和作用机制,分别阐述褪黑素对昼夜节律行为和多种年节律行为的调控作用,同时明确褪黑素与生物钟及神经内分泌系统的直接作用和反馈互动的复杂集合,进一步揭示褪黑素调控生物节律的重要作用,以期为褪黑素的基础研究以及未来探究生物体的生物钟内源性发生机制提供参考。  相似文献   

16.
生物钟的正常运行使得细胞以及组织的活性和功能得以有序进行,从而保证机体功能更好地适应环境的变化。研究发现,抑郁症的发病机制与生物钟的紊乱有关。抑郁症不仅会对患者自身的情绪造成巨大影响,对机体内部的生物节律也会产生影响;而生物钟基因的多态性以及生物钟对单胺类神经递质、下丘脑-垂体-肾上腺轴和神经信号通路的调控,在抑郁症的发病过程中起着重要作用。因此,利用生物节律的变化可以作为治疗抑郁症的重要手段,包括光疗法、剥夺睡眠、睡眠/觉醒相位提前、联合疗法以及时间药理学的应用。  相似文献   

17.
生物钟作为一种重要的调控系统,存在于哺乳动物大部分的细胞、组织和器官中,通过调节生物钟控制基因的节律性表达维持机体以接近24 h为周期的各种行为及生理功能变化。哺乳动物中枢生物钟下丘脑视交叉上核通过神经与体液途径协调同步外周生物钟,肝脏、胰腺、骨骼肌、脂肪组织中参与葡萄糖代谢的众多环节都受到中枢与外周生物钟的调控,如激素信号转导、限速酶基因表达以及营养信号传递等,其中生物钟对肝糖原代谢的调控是生物钟调控葡萄糖稳态的重要环节。基因突变、作息和饮食不规律引起的生物节律紊乱常诱发机体出现胰岛素抵抗、肝糖原含量下降、糖耐量受损等异常表型。该文主要综述了生物钟在肝糖原代谢与葡萄糖稳态调控中的作用,重点阐述了肝脏生物钟调控肝糖原代谢的分子机制,并探讨了轮班工作、时差因素引发的昼夜节律紊乱对人体葡萄糖稳态的影响,以期为糖代谢障碍相关疾病的防治提供新的研究思路。  相似文献   

18.
生物周期节律(circadian rhythms)是指机体内生命活动随时间节律性变化的规律。相关研究证实哺乳动物心血管系统的功能活动存在昼夜周期节律变化,而生物周期节律紊乱也参与动脉粥样硬化(atherosclerosis,AS)的发生、发展。哺乳动物心血管系统中生物周期节律紊乱会破坏血管壁细胞生理功能,改变血流状态,诱发血管炎症反应,影响内皮源性一氧化氮(nitric oxide,NO)的合成与释放等,从而促进斑块的形成和发展,诱发斑块的不稳定,对AS的发生、发展具有重要的作用。现总结近年来生物节律与AS的研究进展,探讨哺乳动物心血管系统生物周期节律的表现形式以及节律紊乱对AS的调控机制,以期为AS的防治提供新的思路。  相似文献   

19.
《生理学报》2021,73(5):734-744
生物钟(circadian clock)是机体内在的自主性计时系统,包括视交叉上核(suprachiasmatic nucleus, SCN)中枢生物钟与各组织外周生物钟。分子生物钟的核心机制包括CLOCK/BMAL1二聚体诱导抑制因子CRYs和PERs的转录,CRYs/PERs复合物反馈抑制前者转录活性,进而使这些生物钟核心因子以及节律输出基因的转录水平呈24 h振荡的反馈调节核心环路,以及REV-ERBα和RORα调控BMAL1转录的补充环路。机体大约80%的蛋白编码基因表达呈现明显的昼夜节律性特征,生物钟系统使生物能够适应地球自转所产生的昼夜节律(近日节律),使机体的代谢平衡与能量相互协同。生物钟与代谢稳态相互依存、互为基础,使机体能够高效利用能量,协同机体不同组织,快速适应内外环境变化。肝脏作为机体代谢的中枢器官,其进行的各种生理活动几乎都受到生物钟的控制。生物钟与肝脏代谢调控之间存在多重交互调控机制,两者的交互平衡失调是代谢性疾病的高风险因素。本文主要就肝脏的糖、脂和蛋白质代谢的节律性调控进行了综述,并强调了线粒体功能的振荡,讨论了肝脏代谢对生物钟的反馈调节,并对生物钟研究方法和应用进行展望。  相似文献   

20.
高原鼠兔肾上腺皮质功能的每日节律及急性低氧效应   总被引:4,自引:2,他引:2  
机体对各种有害刺激如冷、热、毒、损伤、缺氧等均产生应激反应,表现出肾上腺皮质功能增强,皮质激素分泌增加,从而提高了机体对外界恶劣环境的适应能力与耐受能力。本文试图探讨高原上的土生动物--高原鼠兔(Ochotona curzoniae)对低氧应激反应的特点,以及高原鼠兔肾上腺皮质酮分泌的每日节律(Circadian rhythm);并与实验大鼠进行比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号