首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
底丘脑核(subthalamic nucleus,STN)是基底神经节(basal ganglia)环路中唯一的兴奋性谷氨酸能核团,不仅是经典间接通路中的关键节点,而且接受皮层的直接投射从而构成超直接通路(hyperdirect pathway),甚至被认为是驱动整个基底神经节活动的起搏器。STN由于其在基底神经节环路功能中的重要地位而成为临床上神经外科深部脑刺激(deep brain stimulation,DBS)治疗帕金森病(Parkinson’s disease,PD)的首选靶区之一。尽管STN-DBS可显著改善PD运动障碍,但其发挥效应的神经机制至今不明。本文简要综述了STN的传入、传出联系及它们在基底神经节环路中的功能,特别讨论了STN-DBS改善PD运动障碍机制的假说和最新研究进展。我们认为,对STN-DBS作用机制的认识不仅有助于临床PD治疗策略的发展,也有助于对基底神经节环路功能的深入理解。  相似文献   

2.
神经元集群(neuronal ensemble)的节律性活动往往能诱导产生清晰可见的神经振荡,反映着该群神经元规则化和同步化的活动。通常依据频率可将神经振荡分为delta振荡(0.5~3 Hz)、theta振荡(4~12 Hz)、beta振荡(12~30 Hz)、gamma振荡(30~100 Hz)和尖波涟漪(sharp-wave ripples,SWR)(100 Hz的纹波叠加在0.01~3 Hz的尖波上)。这些神经振荡在人和动物的许多脑区中出现,常伴随着感觉、运动、睡眠等行为产生,在认知、学习和记忆巩固过程中发挥着至关重要的作用。本文简要回顾海马脑区神经振荡的研究历程,对其中的最重要的三种神经振荡——theta振荡、gamma振荡和SWR的产生机制、主要功能及各频率神经振荡的相互作用作出概述,并对今后的研究方向作出展望。  相似文献   

3.
Liu J  Chu YX  Feng J  Wang Y  Zhang QJ  Xu LP 《生理学报》2005,57(1):83-90
采用玻璃微电极在体细胞外记录法,观察了5,7-双羟色胺(5,7-dihydroxytryptamine,5,7-DHT)损毁大鼠中缝背核(dorsalraphenucleus,DRN)后,底丘脑核(subthalamicnucleus,STN)神经元电活动的变化。结果发现,对照组和DRN损毁组大鼠STN神经元的放电频率分别是(6.93±6.55)Hz和(11.27±9.31)Hz,DRN损毁组大鼠的放电频率显著高于对照组(P<0.01)。在对照组大鼠,13%的神经元呈现规则放电,46%为不规则放电,41%为爆发式放电;而在DRN损毁组大鼠,具有规则、不规则和爆发式放电的神经元比例分别为9%、14%和77%,爆发式放电的STN神经元比例明显高于对照组(P<0.01)。结果显示,DRN损毁后大鼠STN神经元的放电频率增高,爆发式放电增多,提示在正常大鼠DRN抑制STN神经元的活动。  相似文献   

4.
Lin FK  Xin Y  Gao DM  Xiong Z  Chen JG 《生理学报》2007,59(1):79-85
本工作旨在探讨电刺激束旁核(parafascicular nucleus,PF)对帕金森病模型(Parkinson’s disease,PD)大鼠神经行为的改善作用及其机制。成年雄性Sprague—Dawley大鼠黑质致密部注射6一羟基多巴胺建立PD大鼠模型。采用行为学方法观察电刺激PF对阿朴吗啡诱发的大鼠旋转行为的作用,并应用在体细胞外记录法观察电刺激PF对大鼠底丘脑核(subthalamic nucleus,STN)及丘脑腹内侧核(ventromedial nucleus,VM)神经元放电的影响。结果发现,高频电刺激(130Hz,0.4mA,5s)PF一周,明显改善PD大鼠旋转行为。细胞外放电记录显示,高频电刺激PF使PD大鼠STN神经元自发放电减少,且该作用具有频率依赖性。另外,高频电刺激PF可使VM神经元兴奋,该作用也是频率依赖性的。我们在实验中同时观察到微电泳谷氨酸(glutamicacid,Glu)受体拮抗剂MK-801使STN神经元放电频率减少或完全抑制,微电泳t氨基丁酸(T-amino butyricacid,GABA)受体拮抗剂印防己毒素(picrotoxin,Pic)则使神经元放电频率增加。以上结果表明,GABA能和GIu能传入纤维可会聚于同-STN神经元,并对后者有紧张性作用。高频刺激PF,使该核团到STN神经元的Glu能兴奋性输出减少,导致STN的失活。这一作用通过基底神经节的间接通路,最终释放了丘脑运动核团VM的活性。高频刺激PF经PF,STN和VM的神经通路而改善PD大鼠神经行为。  相似文献   

5.
具有特定频率的节律性刺激能同步大脑内相应频率的神经振荡,使神经活动与外界刺激发生相位锁定,称之为神经振荡-外界节律同步化(neural entrainment).这种同步化的现象伴随着大脑内神经元集群兴奋水平的周期性波动,并与节律信息加工、知觉及注意等认知过程存在关联.得益于其非侵入、易操作以及能有效调控神经活动的特性,神经振荡-外界节律同步化成为了研究神经振荡与知觉和认知功能关系的有力手段,也为认知障碍诊断及干预提供了新的思路和方法.  相似文献   

6.
具有特定频率的节律性刺激能同步大脑内相应频率的神经振荡,使神经活动与外界刺激发生相位锁定,称之为神经振荡-外界节律同步化(neural entrainment).这种同步化的现象伴随着大脑内神经元集群兴奋水平的周期性波动,并与节律信息加工、知觉及注意等认知过程存在关联.得益于其非侵入、易操作以及能有效调控神经活动的特性,神经振荡-外界节律同步化成为了研究神经振荡与知觉和认知功能关系的有力手段,也为认知障碍诊断及干预提供了新的思路和方法.  相似文献   

7.
目的:观察皮层抑制对正常及帕金森病(PD)大鼠丘脑底核(STN)神经元自发放电的影响。方法:采用玻璃微电极细胞外记录法,观察正常和PD大鼠STN神经元的放电活动及脑内微量注射KCl后,两组大鼠STN神经元放电频率的变化。结果:对照组和PD组大鼠STN神经元放电频率分别为(9.78±0.71)Hz和(23.81±1.08)Hz,PD组大鼠放电频率显著高于对照组(P<0.01),且呈爆发式放电的神经元比例明显高于对照组(P<0.05)。皮层注射KCl后,经过较长的潜伏期,两组大鼠STN神经元放电频率均明显降低,后缓慢恢复。结论:PD大鼠STN神经元放电频率增高,爆发式放电增多,而抑制皮层可使这种异常放电得到改善,提示皮层兴奋性的改变可能是PD中STN活动增强的另一个诱因。  相似文献   

8.
γ节律振荡是大脑皮质中常见的,频率在30~80 Hz之间的神经振荡模式,在初级视觉通道中能观察到多种起源的γ节律振荡.在小鼠、猫与猴V1的视觉诱发的γ节律振荡主要起源于L2/3和L4B,并对刺激参数敏感.猫与小鼠初级视觉通道(视网膜、LGN与V1)中观察到起源于视网膜由亮度诱发的高频γ节律振荡;在猴LGN却没有观察到γ节律振荡,而在V1上记录到亮度诱发的γ活动.γ节律振荡的产生与抑制性中间神经元网络有重要的关系,其中抑制性中间神经元中PV细胞被认为与自发γ节律振荡的产生相关. SOM细胞的参与对低频γ节律振荡(20~40 Hz)的产生起到关键作用;而光栅诱发的高频γ节律振荡(65~80 Hz)主要与PV细胞有关.动物在不同生理状态、发育阶段与脑疾病状态下光栅诱发的γ节律振荡存在较大差异,反映大脑对视觉信息加工的变化.  相似文献   

9.
帕金森病丘脑底核神经元的电活动特点   总被引:4,自引:0,他引:4  
Zhuang P  Li YJ 《生理学报》2003,55(4):435-441
本研究探讨了帕金森病(Parkinson′s disease, PD)患者丘脑底核(subthalamic nucleus, STN)神经元电活动的特点及其与PD症状的关系. 35例PD患者在接受手术治疗的同时, 应用微电极细胞记录和EMG记录技术, 记录手术靶点STN及其周围结构神经元的电活动以及手术对侧肢体的EMG. 应用分析软件甄别单细胞电活动, 分析其特点及其与肢体EMG的关系. 结果表明, STN及其周围结构具有特征性放电活动.在36个记录针道中, 共发现436个STN神经元, 平均放电频率44.0±20.5 Hz. 其中, 56%的神经元呈不规则簇状放电; 15%呈紧张性放电; 29%呈规则的簇状放电, 其放电节律与肢体震颤的EMG高度一致(r2=0.66, P<0.01), 称之为震颤细胞. 在PD震颤型患者的STN中发现大量震颤细胞, 且80%位于STN中上部, 而在PD僵直型患者的STN中均发现与运动相关的细胞电活动. 本研究提示, 通过微电极记录技术可准确地判断STN的位置和范围; 与震颤活动相关的细胞放电和与运动相关细胞的放电与PD症状有内在关系; STN参与PD运动障碍的病理生理过程.  相似文献   

10.
细胞外信号调节激酶1和2(Erk1/2)是一种丝氨酸/苏氨酸蛋白激酶,属于丝裂原活化蛋白激酶(MAPK)家族的关键成员,通过磷酸化细胞质和细胞核内的多种底物参与正常及病理状态下的细胞活动。以纹状体为核心的基底神经节(basal ganglia, BG)被认为是运动控制相关的重要结构。Erk1/2通过对纹状体胞外多巴胺(DA)和谷氨酸(Glu)信号进行整合,协调了细胞增殖、分化及转录和翻译等重要细胞事件。研究显示,纹状体多巴胺受体1型中等多棘神经元(D1-MSNs)和多巴胺受体2型中等多棘神经元(D2-MSNs)上,Erk/MAPK信号通路具有差异性调控运动行为的作用。纹状体D1-MSNs的Erk1/2通过多巴胺D1样受体(D1R)激活cAMP/PKA通路促进运动行为,D2-MSNs的Erk1/2通过多巴胺D2样受体(D2R)和α-氨-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)抑制运动行为。此外,Erk/MAPK信号通路还能参与调节帕金森病(PD)、亨廷顿病及成瘾行为相关的病理生理学进程。Erk/MAPK信号通路干预能够有效缓解相关运...  相似文献   

11.
神经振荡反映了大脑神经元集群的同步化活动。哺乳动物的海马体、丘脑、皮质等脑区中的神经振荡在空间定位、导航、记忆等复杂认知过程中发挥至关重要的作用。在多种精神疾病中,神经振荡的损伤及其耦合同步性下降是导致认知障碍的关键。本文综述了神经振荡的微观机制和生理功能的研究进展,介绍了尖波涟漪、gamma振荡和睡眠纺锤波在重性抑郁障碍、精神分裂症、阿尔茨海默病等多种神经精神疾病下的异常改变,并对神经振荡作为临床诊疗靶点的应用潜力做出评估和展望。  相似文献   

12.
基质细胞衍生因子1α(SDF-1α/CXCL12)属于趋化因子CXC家族,与其受体CXCR4组成的CXCL12/CXCR4轴,在大脑生理和病理状态下都发挥着重要作用。CXCL12能与神经祖细胞(NPC)表面上的受体CXCR4结合,从而激活CXCR4下游不同的信号通路,参与调节NPC静息、激活、增殖、迁移和分化等活动。在中枢神经系统(CNS)疾病发生后,大脑中CXCL12会激活内源的NPC,促进NPC增殖并迁移至病灶区域,最终分化为神经元并整合入神经系统,促进神经功能恢复。深入理解CNS疾病时期CXCL12/CXCR4轴对NPC调控作用,对内源性和外源性的NPC应用于CNS疾病具有重要意义。现主要对CXCL12/CXCR4轴调控NPC活动的作用机制及相关信号通路进行综述。  相似文献   

13.
大脑的感觉、情绪、认知等功能与其神经振荡模式有密切的联系。通过施加节律性刺激可以调控大脑的神经振荡模式,进而影响个体感受、情绪状态和认知功能等。与近年来常见的非侵入性电刺激和磁刺激相比,同样依赖于外部刺激输入的节律性感觉刺激具有成本低、易操作等优点,被认为是一种极具潜力的神经调控手段。本文以节律性听觉刺激为例,系统综述了不同类型的节律性听觉刺激如何影响大脑的神经振荡模式,进而影响相关状态和功能;并通过总结外部节律性听觉刺激对个体感知觉、情绪与认知功能的影响,讨论其生理机制和应用前景。  相似文献   

14.
目的:探讨弓状核(ARC)-杏仁核(BMA)间nesfatin-1神经通路的构成及其对胃牵张敏感(GD)神经放电活动和胃运动的影响。方法:逆行追踪结合免疫组化观察ARC-BMA间nesfatin-1神经通路;细胞外放电记录,观察nesfatin-1对GD神经元放电活动的影响及电刺激ARC对BMA内GD神经元放电活动的影响;在体胃运动研究,观察nesfatin-1对胃运动及胃排空的影响及电刺激ARC对胃运动的影响。结果:大鼠ARC-BMA间存在nesfatin-1神经通路;BMA微量注射Nesfatin-1能够促进GD-E神经元放电(4.25±1.02 Hz vs.5.32±1.17 Hz,P0.01),抑制GD-I神经元放电(3.73±0.92 Hz vs.2.64±0.86 Hz,P0.01),并且胃收缩频率及幅度下降,nesfatin-1的这些效应可被SHU9119部分阻断;电刺激ARC后,BMA内nesfatin-1反应性GD神经元放电频率增加(GD-E:5.14±1.32 Hz vs.6.75±1.84 Hz,P0.05;GD-I:2.84±0.86 Hz vs.4.05±1.12 Hz,P0.05),并且胃收缩频率和幅度增强。结论:ARC-BMA间nesfafin-1通路可调控大鼠胃牵张敏感神经元放电活动和胃运动,该效应可能与黑色素信号通路有关。  相似文献   

15.
病毒在神经通路示踪中的应用   总被引:4,自引:0,他引:4  
神经通路示踪是神经解剖学研究的一个重要领域,近年来,随着绿色荧光蛋白(GFP)报告基因的发现和基因重组技术的发展,病毒在神经通路示踪方面显示出了越来越强的优越性,应用也比以往更加广泛。本将对常用的几种神经通路示踪病毒:腺病毒(adenovirus)和单纯痘疹病毒(Herpes simplex virus,HSV)在神经解剖学中的应用予以综述。  相似文献   

16.
神经同步活动被认为是神经系统信息处理的关键。脑内存在多种不同频段的局部同步活动和区域间同步活动,这些神经同步活动与多种行为和认知功能相关。记忆作为脑的高级认知功能,其形成和巩固的过程与神经同步活动关系密切。本文主要从体内非快速眼动(non-rapid eye movement, NREM)睡眠期间多个脑区间的神经振荡活动以及体外培养神经网络的同步爆发活动两个层面综述了神经同步活动与记忆巩固关系的研究进展,分析了当前研究存在的问题,并对今后的相关研究作出展望。  相似文献   

17.
藁本内酯(LIG)具有抑制神经炎症反应和神经保护作用,TLR4/NF-κB作为脑内神经炎症应答最重要的通路之一,与过氧化物酶体增殖受体γ(PPARγ)的相互作用与大脑神经炎症应答及炎症损伤有关。本研究为阐明TLR4/NF-κB信号通路和PPARγ在LIG的神经炎症抑制作用中所发挥的作用,通过雄性大鼠侧脑室注射脂多糖(LPS)造成大鼠神经炎模型研究,并在注射LPS前预先给予溶媒、LIG(10 mg/kg,20 mg/kg)、GW9662(PPARγ选择性拮抗剂),探讨LIG对于LPS诱导的大鼠急性神经炎症模型的保护作用及机制。结果表明LIG对于LPS诱导的促炎症因子(TNF-α,MCP-1)的产生、TLR4/NF-k B/p38 MAPK信号通路的活化均有抑制作用,且具有剂量依赖性,同时能增强PPARγ转录因子活性,同样具有剂量依赖性。LIG对于LPS诱导的大鼠神经炎症的上述作用均可被GW9662拮抗。这些结果表明LIG通过调节PPARγ依赖的TLR4/NF-κB信号通路对LPS诱导的神经炎症起到抑制作用。  相似文献   

18.
横断山河谷区具有极高的景观异质性,气候与植被类型多样化程度较高。为探讨土壤C、N、P、S四种生物元素在滇西怒江、澜沧江、金沙江及元江并流河谷区的区域循环特征,在各河谷的森林、草地、农田中分别取浅层(0~10 cm)土样,测定了土壤中C、N、P、S的循环酶,即β-葡萄糖苷酶(BG)、N-乙酰-β-D-氨基葡萄糖苷酶(NAG)、酸性磷酸酶(AP)、硫酸脂酶(SU)活性,分析了土壤酶活性及其化学计量学特征与环境因素之间的关系。结果表明: 不同流域和不同土地类型下AP、NAG活性均有显著差异;4种酶活性之间均呈显著正相关,BG、NAG、SU活性由东南向西北随采样点的海拔升高而逐渐升高;在各流域土壤中,酶活性的生态化学计量比均为AP∶SU > BG∶SU > NAG∶SU > BG∶NAG > BG∶AP > NAG∶AP;与各流域内的林地和草地相比,农田土壤BG∶NAG较高,而NAG∶AP较低(元江流域除外);农田土壤中AP∶SU、BG∶SU、NAG∶SU在元江流域小于草地和林地,在澜沧江流域和金沙江流域则大于林地而小于草地。土壤酶活性及其化学计量学特征受到土壤理化性质、气候及区位的综合影响,其中土壤理化性质的影响最大。农业活动对C∶N∶P相关酶化学计量学特征具有显著影响,降低了土壤中N分解酶与其他酶活性的计量比,表现为增加了BG∶NAG,降低了NAG∶AP,农业活动对其他酶化学计量学特征的影响较小。  相似文献   

19.
Gamma神经振荡的频率在30~100 Hz之间,存在于动物和人类大脑的多个区域,如丘脑、体感皮层以及海马等部位,在各个尺度水平上都可被检测到.抑制性中间神经元组成的神经网络是产生此高频节律性活动的主要条件之一.皮层的gamma神经振荡与丘脑-皮层系统有关.Gamma神经振荡具有易化突触可塑性和调节神经网络的作用,主要参与感觉特征绑定、选择性注意以及记忆等高级功能.  相似文献   

20.
冀北承德地区土壤生源要素生态化学计量与空间分异特征   总被引:2,自引:0,他引:2  
土壤生源要素生态化学计量和空间分异特征对指导土地利用优化具有重要意义。以京津冀生态屏障区组成部分的承德市为研究区,采集1597件土壤样品,运用地统计学、全局Moran′s I指数、克里金插值和冗余分析等方法对承德全域主要土壤生源要素的空间分异特征及其影响因素进行了系统分析。结果表明,承德市表层土壤生源要素全钾(STK)、有机碳(SOC)、全氮(STN)、全磷(STP)和全硫(STS)平均含量分别为21.962 g/kg、18.826 g/kg、1.168 g/kg、0.587 g/kg和0.193 g/kg。垂向分布上STN、SOC和STS含量总体随深度增加而降低,STK和STP垂向分异受成土母质控制,高地质背景区STK和STP含量随深度增加逐渐升高。SOC和STN含量显著相关,空间耦合程度高,C:S与SOC含量显著正相关,C:N和C:S空间分布稳定,土壤生源要素的化学计量比主要受SOC含量控制。SOC空间自相关极显著,空间分异受结构性因素控制;STK空间自相关程度较高,分布稳定;STP空间自相关较显著,分布异质性较大;STS空间自相关相对最弱,受人为活动影响较明显。SOC和STN空间...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号