首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible characterization of intestinal microflora as an integral system after exposure to antibacterial drugs was studied. Microflora of the contents and mucosa of the jejunum and large intestine in control rats and in rats exposed to metronidazole was studied and numerical indicators characterizing ratios of dominating and accompanying microbial groups in the intestine biotope++ were developed. With this purpose the proportion of the microbial groups in the total quantity of the microbes of a microbiocenosis was determined by the data on microflora quantitative composition. On the basis of detected wide species variety of microorganisms potentially dominating by their biotope numerical limits of the norm were determined only for the microbial groups of the accompanying microflora. The total proportion of the accompanying microbial populations under the normal conditions and the detected measure of deviation (reverse, partial) from the ratio of the dominating and accompanying microorganisms peculiar of the given biotope++ in separate subjects promoted estimation of microbiocenoses of definite biotope of the intestine as a whole.  相似文献   

2.
Several in vivo and in vitro studies have confirmed that flavonols are metabolized by the intestinal microflora to their corresponding hydroxyphenylacetic acids. In this article, a comparison of the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin in the elevated plus maze after oral (po) and intraperitoneal (ip) administration to mice in a dose range of 0.1 to 2.0 mg/kg is presented. In addition, their corresponding metabolites p-hydroxyphenylacetic acid (p-HPAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were tested after intraperitoneal administration. Anxiolytic activity was detected for kaempferol and quercetin only after oral administration. No anxiolytic effects were observed when kaempferol and quercetin were given via the intraperitoneal administration route. The corresponding hydroxyphenylacetic metabolites p-HPAA and DOPAC showed anxiolytic effects after intraperitoneal application. In order to further test the hypothesis that flavonoids are possible prodrugs which require activation by intestinal bacteria, gut sterilization was performed using pretreatment with the antibiotic enrofloxacin (7.5 mg/day, po, for 4 days). After antibiotic treatment, the anxiolytic effect of kaempferol and quercetin disappeared, whereas it was still present for the positive control diazepam. Our results support the hypothesis that flavonoids act as prodrugs which are transformed into their active hydroxyphenylacetic acid metabolites by intestinal microflora.  相似文献   

3.
Naringenin, the predominant flavanone in grapefruit, mainly occurs as glycosides such as naringenin-7- rhamnoglucoside or naringenin-7-glucoside. This study compared kinetics of absorption of naringenin and its glycosides in rats either after a single flavanone-containing meal or after adaptation to a diet for 14 days. Regardless of the diet, circulating metabolites were glucurono- and sulfoconjugated derivatives of naringenin. The kinetics of absorption of naringenin and naringenin-7-glucoside were similar, whereas naringenin-7-rhamnoglucoside exhibited a delay in its intestinal absorption, resulting in decreased bioavailability. After naringenin-7-glucoside feeding, no glucoside was found in the cecum. However, after feeding naringenin-7-rhamnoglucoside, some naringenin-7-rhamnoglucoside accumulated in cecum before being hydrolyzed by intestinal microflora. Adaptation to flavanone diets did not induce accumulation of plasma naringenin. Moreover, flavanone cecal content markedly decreased after adaptation, and almost no naringenin-7-rhamnoglucoside was recovered after naringenin-7-rhamnoglucoside feeding, suggesting that an adaptation of cecal microflora had occurred. Overall, these data indicate that flavanones are efficiently absorbed after feeding to rats and that their bioavailability is related to their glycosidic moiety.  相似文献   

4.
S Takeno  T Sakai 《Teratology》1991,44(2):209-214
A study was undertaken to investigate the relationship between nitroreduction of nitrazepam and its teratogenic effects and the involvement of the intestinal microflora in Sprague-Dawley rats. Incubation of bacterial suspensions from rat cecal contents with nitrazepam resulted in extensive reduction to 7-aminonitrazepam. Rat liver homogenates also reduced nitrazepam but only under anaerobic conditions. Following oral administration of 300 mg/kg nitrazepam to pregnant rats, total excretion of reduced metabolites (7-aminonitrazepam and 7-acetylaminonitrazepam) in urine and feces accounted for approximately 30% of the administered dose. When antibiotics were administered to dams to deplete their intestinal microflora prior to administration to nitrazepam, the total excretion of the reduced metabolites in the urine and feces decreased to 2% of the dose. Nitroreductase activity of cecal contents was almost completely suppressed by antibiotic pretreatment, but the activity of liver homogenates was not significantly altered by the same treatment. The incidence of nitrazepam-induced malformations was markedly decreased by antibiotic pretreatment. These results suggest that the intestinal microflora plays an important role in the reductive metabolism of nitrazepam and that the teratogenicity of nitrazepam may be related to its nitroreduction by the microflora.  相似文献   

5.
Anthocyanins are suggested to be responsible for protective effects against cardiovascular diseases and certain forms of cancer. Although previous studies have implicated that intact anthocyanidin glycosides were decreased extensively by interactions in the gastrointestinal tract, only few data are available concerning the metabolism by the intestinal microflora. Using a new in vitro model, we have investigated the microbial deglycosylation and degradation of six anthocyanins exhibiting three different aglycones with mono- or di-beta-D-glycosidic bonds using high-performance liquid chromatography-diode array (HPLC-DAD) and gas chromatography-mass spectrometry (GC-MS) detection. We have found that all anthocyanidin glycosides were hydrolysed by the microflora within 20 min and 2 h of incubation depending on the sugar moiety. Due to the high instability of the liberated aglycones at neutral pH, primary phenolic degradation products were already detected after 20 min of incubation. Further metabolism of the phenolic acids was accompanied by demethylation. Because of their higher chemical and microbial stability, phenolic acids and/or other, not yet identified, anthocyanin metabolites might be mainly responsible for the observed antioxidant activities and other physiological effects in vivo.  相似文献   

6.
我们选择了几种药性不同的中药,使用各种选择性培养基,对给药组和正常动物组的地鼠肠菌群进行了研究,结果表明,黄芪组与正常动物组比较需氧菌的量有所增加,统计学差异显著(P<0.001)。而其他几味苦寒药(大黄、黄芩、白芍等)对需氧菌的作用不明显。在各类厌氧菌的分离结果中,各给中药组与正常组比较均有明显差异。给药组之间比较,药性相同的组之间没有显著变化,药性不同的组之间变化显著。通过实验我们发现中药对正常地鼠的肠道菌群是有明显影响的,与正常动物组相比及不同药性组间相比各类菌的增长或减少都具有统计学意义。  相似文献   

7.
The intestinal microflora lives in intimate contact with its surrounding intestinal wall and the bacteria can exert beneficial or deleterious effects on the host, depending on whether they are classified as probiotics or as pathogens. The interaction is determined on one hand by characteristics of the microorganisms, and on the other hand by characteristics of the intestinal wall. Together they determine the health status of the intestine. This review describes parameters and techniques (with advantages and disadvantages) available for poultry to identify the characteristics of the intestinal health, as constituted by three components: immunity, integrity, and functionality. To investigate intestinal immunity, in situ detection of various cell populations of the immune system with specific monoclonal antibodies using immunocytochemical staining is a reliable, semi-quantitative method. In vitro assays to measure functional aspects of T lymphocytes, B lymphocytes, plasma cells, natural killer cells, macrophages, and phagocytes are applicable to intestinal wall tissue. For investigation of intestinal integrity, in situ detection of villous height and crypt depth and their ratio, and villus arrangement is still an easy, routine histological method. In addition, expression levels of specific molecules, such as E-cadherin, different growth factors, and trefoil factor, seem promising parameters. To investigate functionality of the intestine, the permeability can be measured as the rate of transport of tracer molecules across the epithelial surface. Furthermore, determination of the level of mucus secretion and its composition are a valuable tool. These parameters for immunity, integrity and functionality, or a combination thereof, are indispensable to investigate the influence of intestinal microorganisms on intestinal health.  相似文献   

8.
Bacterial Interactions in Early Life Stages of Marine Cold Water Fish   总被引:11,自引:0,他引:11  
Abstract The intensive rearing of various fish species in aquaculture has revealed intimate relationships between fish and bacteria that eventually may affect establishment of a ``normal' mucosal microflora or result in disease epizootics. Interactions between bacteria and mucosal surfaces play important roles both at the egg and larval stages of marine fish. Bacterial adhesion and colonization of the egg surface occur within hours after fertilization. The diverse flora which eventually develops on the egg appears to reflect the bacterial composition and load of the ambient water, but species-specific adhesion at the egg surface may also play a role in development of the egg epiflora. Proteolytic enzymes produced by members of the adherent epiflora may cause serious damage to the developing egg and may also affect further adhesion of the epiflora. Ingestion of bacteria at the yolk sac stage results in establishment of a primary intestinal microflora which seems to persist beyond first feeding. Establishment of a gut microflora is likely to undergo several stages, resulting in an ``adult' microflora weeks to months after first feeding. Ingested bacteria may serve as an exogenous supply of nutrients or essential factors at an early life stage. Early exposure to high bacterial densities is probably important for immune tolerance, and thus for the establishment of a protective intestinal microflora. Successful rearing of early life stages of several marine fish species depends on knowledge of the complex interactions among the cultured organisms and the bacterial communities which develop at the mucosal surfaces and in the ambient water and rearing systems. The routine use of antibiotics during rearing of fish larvae is not advisable, since it may increase the risk of promoting antibiotic resistance and adversely affect the indigenous microflora of the larvae. The use of probiotics has proven advantageous in domestic animal production, and the search for effective probiotics may have a great potential in aquaculture of marine organisms. Bacteria with antagonistic effects against fish pathogens have been successfully administered to several fish species, resulting in decreased mortality or increased growth rate. Received: 14 December 1998; Accepted: 7 April 1999  相似文献   

9.
To investigate the modifying role of the intestinal microflora in the metabolism of 1-nitropyrene (1-NP) via enterohepatic circulation, we collected bile from male Wistar rats administered [3H]1-NP orally. The bile was mixed with the intestinal contents (IC) prepared from untreated rats and the mixture was incubated anaerobically under an atmosphere of nitrogen at 37 C. Samples of the reaction mixture were removed at intervals to assay their mutagenic potential, to determine the radioactivity bound to the IC, and for analysis of the biliary metabolites. The binding of the radioactivity to the IC increased linearly as a function of time during the 1-hr incubation. The time-dependent binding does not occur with heat-treated IC and the binding was inhibited by addition of D-saccharic acid 1,4-lacton, a beta-glucuronidase inhibitor. The mutagenicity (for Salmonella typhimurium strain TA98 without S9 mix) of the bile increased early in the incubation period and then decreased very rapidly. The mutagenicity of the bile was also enhanced by treatment with a sonicated IC extract or beta-glucuronidase, but not with a heat-treated IC or aryl-sulfatase. The metabolites produced after the bile was incubated for short periods with the IC were mainly nitrohydroxypyrenes; at later times nitroreduction occurred. The level of acetylaminohydroxypyrenes, which were formed by deconjugation, did not change during the incubation. To determine the degree of contribution of the IC to the total acetylating capacity, we measured acetyltransferase activity of the IC and various organs in Wistar rats. The liver had the highest N-acetyltransferase activity among the seventeen organs examined. Considerable activity was also detected in the kidney, small intestine, lung, and testis, but the IC showed very low activity. The acetylating capacity of the IC was 0.27% of the total capacity in rats, and that of the liver was more than 80%. These results suggest that the nitrohydroxypyrenes formed from 1-NP in the liver were conjugated to glucuronic acid and excreted via the bile duct into intestine. Hydrolysis of these glucuronide conjugates by bacterial beta-glucuronidase liberated into intestine, free nitrohydroxypyrenes, which were direct-acting mutagens. The released aglycons were then rapidly nitro-reduced by intestinal microflora, but contribution of the intestinal microflora to acetylation of the reduced metabolites is very low.  相似文献   

10.
Since bacterial nitroreduction may play a critical role in the activation of nitropolycyclic aromatic hydrocarbons, we have used batch and semicontinuous culture systems to determine the ability of intestinal microflora to metabolize the carcinogen 6-nitrochrysene (6-NC). 6-NC was metabolized by the intestinal microflora present in the semicontinuous culture system to 6-aminochrysene (6-AC), N-formyl-6-aminochrysene (6-FAC), and 6-nitrosochrysene (6-NOC). These metabolites were isolated and identified by high-performance liquid chromatography, mass spectrometry, and UV-visible spectrophotometry and compared with authentic compounds. Almost all of the 6-NC was metabolized after 10 days. Nitroreduction of 6-NC to 6-AC was rapid; the 6-AC concentration reached a maximum at 48 h. The ratio of the formation of 6-AC to 6-FAC to 6-NOC at 48 h was 93.4:6.3:0.3. Interestingly, compared with results in the semicontinuous culture system, the only metabolite detected in the batch studies was 6-AC. The rate of nitroreduction differed among human, rat, and mouse intestinal microflora, with human intestinal microflora metabolizing 6-NC to the greatest extent. Since 6-AC has been shown to be carcinogenic in mice and since nitroso derivatives of other nitropolycyclic aromatic hydrocarbons are biologically active, our results suggest that the intestinal microflora has the enzymatic capacity to generate genotoxic compounds and may play an important role in the carcinogenicity of 6-NC.  相似文献   

11.
Metabolism of 6-nitrochrysene by intestinal microflora.   总被引:3,自引:3,他引:0       下载免费PDF全文
Since bacterial nitroreduction may play a critical role in the activation of nitropolycyclic aromatic hydrocarbons, we have used batch and semicontinuous culture systems to determine the ability of intestinal microflora to metabolize the carcinogen 6-nitrochrysene (6-NC). 6-NC was metabolized by the intestinal microflora present in the semicontinuous culture system to 6-aminochrysene (6-AC), N-formyl-6-aminochrysene (6-FAC), and 6-nitrosochrysene (6-NOC). These metabolites were isolated and identified by high-performance liquid chromatography, mass spectrometry, and UV-visible spectrophotometry and compared with authentic compounds. Almost all of the 6-NC was metabolized after 10 days. Nitroreduction of 6-NC to 6-AC was rapid; the 6-AC concentration reached a maximum at 48 h. The ratio of the formation of 6-AC to 6-FAC to 6-NOC at 48 h was 93.4:6.3:0.3. Interestingly, compared with results in the semicontinuous culture system, the only metabolite detected in the batch studies was 6-AC. The rate of nitroreduction differed among human, rat, and mouse intestinal microflora, with human intestinal microflora metabolizing 6-NC to the greatest extent. Since 6-AC has been shown to be carcinogenic in mice and since nitroso derivatives of other nitropolycyclic aromatic hydrocarbons are biologically active, our results suggest that the intestinal microflora has the enzymatic capacity to generate genotoxic compounds and may play an important role in the carcinogenicity of 6-NC.  相似文献   

12.
蛋白质不仅是构建机体组织的主要原料,而且对动物新陈代谢活动至关重要。数目庞大的肠道细菌在机体营养素,尤其是氮营养素的代谢过程中发挥重要作用。小肠细菌能代谢部分氨基酸,进而影响宿主整体氨基酸的代谢。与小肠相比,大肠拥有更为丰富的菌群和更长的蠕动时间。一方面,进入大肠的氮营养素会影响大肠菌群的代谢和群落结构;另一方面,大肠菌群也能广泛参与氮营养素的代谢与利用,生成许多代谢产物,进而影响机体健康。本文主要综述了日粮蛋白质对大肠菌群的影响、大肠菌群代谢氨基酸的产物及其对肠道生理和机体健康的影响。  相似文献   

13.
2型糖尿病(type 2 diabetes mellitus,T2DM)是一种因胰岛素分泌不足或胰岛素抵抗而引起的慢性代谢疾病,T2DM患病人数的快速增长使治疗和预防T2DM成为世界上亟待解决的医学问题。随着微生物组学技术的进步,肠道菌群及其代谢产物与T2DM的研究亦逐渐深入,肠道菌群可能成为治疗和预防T2DM的靶点。肠道菌群及其代谢产物作用于T2DM的潜在机制,主要是参与体内炎症反应、增加肠道短链脂肪酸产量、调节肠道胆汁酸的代谢、调节支链氨基酸的代谢等。目前,治疗T2DM的药物可能会产生一些副作用,而基于肠道菌群干预T2DM的措施相对安全无害。例如,可通过严格控制的特定结构饮食长期摄入或增加益生菌的长期摄取控制血糖,或通过口服可影响肠道菌群生态结构的降糖药物(二甲双胍、阿卡波糖)有效地调控血糖水平。综述基于肠道菌群及其代谢产物诱发T2DM的潜在机制,研讨基于肠道菌群干预T2DM的措施,从肠道菌群的新视角探索治疗T2DM的新方法,为彻底治疗T2DM提供一种新可能。  相似文献   

14.
The use of semicontinuous culture system for determining the role of the human intestinal microflora int he biotransformation of xenobiotics is discussed. This model system, which stimulates the lumen of the large intestine, has been used to investigate human intestinal microflora metabolism of compounds representative of three different classes of chemicals; a benzidine-based azo dye, Direct Black 38, a nitropolycyclic aromatic hydrocarbon, 1-nitropyrene and a substituted pyrimidine, 5-fluorocytosine. Metabolites of each of the test compounds were identified, and the kinetics of production and biological activity of the metabolites determined. Metabolic adaptation was observed with 1-nitropyrene and 5-fluorocytosine incubations. This microbial culture system could be quite useful, especially in concert with other in vitro models and animal studies, for determining the pharmacological and toxicological role of the human intestinal microflora in the transformation of xenobiotics. Particular emphasis on the application of this method for toxicological studies in elucidating the role of the intestinal microflora in the etiology of cancer is described.  相似文献   

15.
大豆异黄酮微生物转化研究进展   总被引:2,自引:0,他引:2  
大豆异黄酮是大豆在其生长过程中形成的一类次生代谢产物,具有抗氧化、抗癌、减少骨质流失、降低心脑血管发病率等多种生理功能。目前已知,被摄人机体的大豆异黄酮将被肠道微生物菌群转化为具有更高、更广生物学活性的不同产物。因此,大豆异黄酮对人体的有益调节作用强弱并不简单取决于摄人机体的净含量的多少,更在于被摄人机体的大豆异黄酮将如何被肠道菌群转化。本文从大豆异黄酮的组成与功能、大豆异黄酮体内吸收、代谢及微生物转化、转化产物的活性以及高效合成等方面进行了系统综述,对大豆异黄酮微生物生物转化研究现状和存在问题进行分析总结,并对今后发展趋势进行展望,旨在推动高活性大豆异黄酮微生物转化产物的研究与开发。  相似文献   

16.
Changes were examined in the intestinal microflora in broiler chickens fed a diet containing antibiotics to obtain fundamental information on the mechanisms of beneficial effect of the antibiotics upon livestock production. Three antibiotics (colistin, bacitracin, and enramycin) were employed as feed additives. Experiments were conducted with broiler chickens in two ways. In one way dietary antibiotics were fed continually at levels approved for use as feed additives for a long term. In the other they were fed the same antibiotics for a short term. Significant changes in microflora were observed mainly in such bacterial groups as aerobic bacteria and Lactobacillus. In the long term administration, three possible modes of variance in the bacterial flora were postulated: Changes directly related to the antibacterial spectrum of antibiotics. Antagonistic changes related to an ecological balance in the bacterial flora. Changes in quantitative balance of bacteria constituting each bacterial group. The change in the intestinal microflora during administration of the antibiotic diet was expressed as a complex form of these transition modes. In the short term administration, it was demonstrated that the effect of the antibiotic diet lingered even 7 days after administration. This suggests that antibiotics used as feed additives may possibly affect the stability of the intestinal microflora.  相似文献   

17.
Daidzein (4',7-dihydroxyisoflavone), a soy phytoestrogen, is a weakly estrogenic compound that may have potential health benefits. Biotransformation of daidzein by the human gut microflora after ingestion converts it to either the highly estrogenic metabolite equol or to nonestrogenic metabolites. We investigated the metabolism of daidzein by colonic microflora of rats. Fecal samples, obtained before and after rats were exposed to daidzein at 250 or 1000 parts per million, were incubated in brain-heart infusion (BHI) broth with daidzein under anaerobic conditions. Samples were removed from the cultures daily and analyzed by high-performance liquid chromatography (HPLC) and mass spectrometry. The fecal bacteria of all rats, regardless of prior daidzein exposure, metabolized the added daidzein to dihydrodaidzein. Both compounds disappeared rapidly from BHI cultures incubated for more than 24 h, but no other daidzein metabolites were detected. Only daidzein and dihydrodaidzein were found in a direct analysis of the feces of rats that had consumed daidzein in their diets. Unlike the fecal bacteria of humans and monkeys, the rat flora rapidly metabolized daidzein to aliphatic compounds that could not be detected by HPLC or mass spectral analysis.  相似文献   

18.
There is considerable evidence that stilbenes provide health benefits. Trans-piceid is one of the major stilbenoid compounds in red wine and other plants. The purpose of this study is to investigate the metabolism of piceid in rats, including its conversion product by intestinal microflora in vitro and urinary metabolites. A HPLC-MS/MS method with electrospray ionization (ESI), negative ion mode and collision induced dissociation (CID), was used to elucidate the structures of the major metabolites of piceid. Three metabolites resveratrol, dihydropiceid and dihydroresveratrol were detected after incubating with gut microbiota for 5h. Four urinary metabolites of piceid were identified as resveratrol, dihydroresveratrol monosulfate, piceid monosulfate and piceid monoglucuronide.  相似文献   

19.
调整肠道菌群在对肝硬化大鼠肝组织学的影响   总被引:18,自引:0,他引:18  
目的 观察益生菌制剂培菲康对肝硬化大鼠的防治效果,探讨其治疗肝病的机理。方法 采用CCL4复合因素法制造肝硬化模型,进行肠道菌群培养及肝组织学检查。结果 (1)治疗组G^-需氧杆菌数量明确低于模型组(P<0.05);(2)治疗组肝细胞变性坏死程度明显轻于C组;(3)电镜结果表明T组肠粘膜绒毛高度及上皮连接均好于C组,肝细胞器损伤轻于C组。结论 培菲康可调整菌群失调,减少G^-需氧杆菌的定值,改善肝脏及肠粘膜的组织形态,提示口服益生菌制剂可作为肝病患者安全常规的用药。  相似文献   

20.
目的应用肠杆菌基因间重复共有序列基因扩增(ERIC-PCR)和聚合酶链式反应——变性梯度凝胶电泳(PCR-DGGE)分析壳聚糖对抗生素致肠道菌群失调小鼠的影响。方法 SPF级昆明小鼠24只,每组8只,依次分为模型组(N)、壳聚糖高(CS-H)和低浓度组(CS-L),盐酸左氧氟沙星灌胃6d后使用相应药物灌胃24d,收集鼠便,提取粪便细菌DNA,利用ERIC-PCR和PCR-DGGE电泳获得肠道菌群指纹图谱,主成分分析(PCA)和聚类分析(UPGMA)研究肠道菌群整体差异,并鉴定优势条带序列。结果 ERIC-PCR表明菌群失调组小鼠肠道中细菌条带减少明显,以300bp左右的条带为特征条带,PCR-DGGE显示屎肠球菌为优势菌型;壳聚糖灌胃小鼠肠道菌群结构组成发生改变,乳酸菌成为优势菌型。结论壳聚糖扶持乳酸菌等益生菌、抑制肠球菌等病原菌的增殖,起到益生元的作用进而调节肠道微生态均衡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号