首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequences of the displacement-loop (D-loop) regions of mitochondrial DNA (mtDNA) from mouse L cells and human KB cells have been determined and provide physical maps to aid in the identification of sequences involved in the regulation of replication and expression of mammalian mtDNA. Both D-loop regions are bounded by the genes for tRNAPhe and tRNAPro. This region contains the most highly divergent sequences in mtDNA with the exceptions of three small conserved sequence blocks near the 5' ends of D-loop strands, a 225 nucleotide conserved sequence block in the center of the D-loop strand template region, and a short sequence associated with the 3' ends of D-loop strands. A sequence similar to that associated with the 3' termini of D-loop strands overlaps one of the conserved sequence blocks near the 5' ends of D-loop strands. The large, central conserved sequence probably does not code for a protein since no open reading frames are discretely conserved. Numerous symmetric sequences and potential secondary structures exist in these sequences, but none appear to be clearly conserved between species.  相似文献   

2.
动物mtDNA控制区及保守与异质   总被引:6,自引:1,他引:5  
苏瑛 《四川动物》2005,24(4):669-672
本文通过文献综述,对动物线粒体DNA控制区进行了阐述.从线粒体控制区(control region)基因组的研究出发,重点介绍了动物线粒体控制区基因组结构特点.主要结论:由于碱基替换、插入和缺失以及重复序列数目的变异致使D-loop成为mtDNA中变异最多的区域,但突变和结构重排并不是发生在整个D-loop区域,而是在高变区;大多研究集中在mtDNA D-loop保守区和异质方面:对D-loop序列分析,能较好地阐明动物的起源,在动物亲缘关系鉴定、系统进化和物种形成方式的研究等领域具有广阔的研究和应用前景.  相似文献   

3.
The nucleotide sequences of the D-loop region and its flanking genes of the mitochondrial DNA (mtDNA) from Japanese pond frogs were determined by the methods of PCR, cloning, and sequencing. The frogs belonged to two species, one subspecies, and one local race. The gene arrangements adjacent to the D-loop region were analyzed. The frogs shared a unique mitochondrial gene order that was found in Rana catesbeiana; i.e., cyt b--D-loop region--tRNA(Leu(CUN))--tRNA(Thr)--tRNA(Pro)--tRNA(Phe)--12S rRNA. The arrangements of the three tRNA genes of these frogs were different from those of X. laevis, a species which has the same overall structure as in mammals. Highly repetitive sequences with repeat units (16-bp or 17-bp sequence specific for each taxon) were found in the D-loop region. The length of repetitive sequences varied from 0.6 kbp to 1.2 kbp, and caused the extensive size variation in mtDNA. Several short sequence elements such as putative TAS, OH, CSB-1, and CSB-2 were found in the D-loop region of these frogs. The sequences of these short regulatory elements were conserved in R. catesbeiana, X. laevis, and also in human. The comparison of sequence divergences of the D-loop region and its adjacent genes among various taxa revealed that the rates of nucleotide substitutions depend on genes. The nucleotide sequences of the 3'-side segment of the D-loop region were the most variable among taxa, whereas those of the tRNA and 12S rRNA genes were the most conservative.  相似文献   

4.
The nucleotide sequence of 1.4 kbp SmaI-fragment of minicircle DNA from kinetoplasts of Crithidia fasciculata has been determined and some sequence elements characterized. The sequence contains several oligo(dT)blocks located on the same strand in phase with a period of DNA helix turn, thus representing a "bent helix". Both sides of the bent helix region are flanked by sequences capable of forming a cloverleaf structure. There are also two direct 150 bp repeats located 180 degrees apart on the circular map of the molecule. Each repeat contains the sites of H-strand and L-strand replication origin. The specific stem-loop secondary structure may be folded by the nucleotide sequence within the origins region. The alignment of the sequence determined with two other C. fasciculata minicircle sequences spanning over the bent helix and the adjacent regions has indicated the presence of several conserved sequence blocks, one of them representing the sequence of the bend. The divergence of three sequences occurred mainly by small insertions-deletions. Several open reading frames were found, the largest of which being capable of coding for the approximately 200 amino acids polypeptide.  相似文献   

5.
This paper reports an intraorder study on the D-loop-containing region of the mitochondrial DNA in rodents. A complete multialignment of this region is not feasible with the exception of some conserved regions. The comparative analysis of 25 complete rodent sequences from 23 species plus one lagomorph has revealed that only the central domain (CD), a conserved region of about 80 bp in the extended termination-associated sequences (ETAS) domain, adjacent to the CD, the ETAS1, and conserved sequence block (CSB) 1 blocks are present in all rodent species, whereas the presence of CSB2 and CSB3 is erratic within the order. We have also found a conserved region of 90 bp located between tRNAPro and ETAS1 present in fat dormouse, squirrel, guinea pig, and rabbit. Repeated sequences are present in both the ETAS and the CSB domain, but the repeats differ in length, copy number, and base composition in different species. The potential use of the D-loop for evolutionary studies has been investigated; the presence/absence of conserved blocks and/or repeated sequences cannot be used as a reliable phylogenetic marker, since in some cases they may be shared by distantly related organisms but not by close ones, while in other ones a relationship between tree topology and presence/absence of such motifs is observed. Better results can be obtained by the use of the CD, which, however, due to its reduced size, when used for tracing a phylogenetic tree, shows some nodes with low statistical support. Received: 26 February 2001 / Accepted: 6 June 2001  相似文献   

6.
Summary A detailed comparative study of the regions surrounding the origin of replication in vertebrate mitochondrial DNA (mtDNA) has revealed a number of interesting properties. This region, called the D-loop-containing region, can be divided into three domains. The left (L) and right (R) domains, which have a low G content and contain the 5 and the 3 D-loop ends, respectively, are highly variable for both base sequence and length. They, however, contain thermodynamically stable secondary structures which include the conserved sequence blocks called CSB-1 and TAS which are associated with the start and stop sites, respectively, for D-loop strand synthesis. We have found that a mirror symmetry exists between the CSB-1 and TAS elements, which suggests that they can act as specific recognition sites for regulatory, probably dimeric, proteins. Long, statistically significant repeats are found in the L and R domains.Between the L and R domains we observed in all mtDNA sequences a region with a higher G content which was apparently free of complex secondary structure. This central domain, well preserved in mammals, contains an open reading frame of variable length in the organisms considered.The identification of common features well preserved in evolution despite the high primary structural divergence of the D-loop-containing region of vertebrate mtDNA suggests that these properties are of prime importance for the mitochondrial processes that occur in this region and may be useful for singling out the sites on which one should operate experimentally in order to discover functionally important elements.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

7.
The mitochondrial DNA (mtDNA) from the Atlantic cod, Gadus morhua, was mapped using 11 different restriction enzymes and cloned into plasmid vectors. Sequence data obtained from more than 10 kilobases of cod mtDNA show that the genome organization, genetic code, and the overall codon usage have been conserved throughout the evolution of vertebrates. Comparison of the derived amino acid sequences of proteins encoded by cod mtDNA to the ones encoded by Xenopus laevis mtDNA revealed that the amino acid identity range from 46% to 93% for the different proteins. ND4L is most divergent while COI is most conserved. GUG was found as the translation initiation codon of the COI gene, indicating a dual coding function for this codon. The sequences of the 997 base pair displacement-loop (D-loop)-containing region and the origin of L-strand replication (oriL), are presented. Only few of the primary and secondary structure features found to be conserved among mammalian mitochondrial D-loops, can be identified in cod. Presence of CSB-2 in the D-loop-containing region and the conserved hairpin structure at oriL, indicates that replication of bony fish mtDNA may follow the same general scheme as described for higher vertebrates.  相似文献   

8.
9.
Mammalian pancreatic-type ribonucleases (RNases) 1 represent single-copy genes in the genome of most investigated mammalian species, including Mus musculus and other murid rodents. However, in six species belonging to the genus Rattus and closely related taxa, several paralogous gene products were identified by Southern blotting and PCR amplifications of genomic sequences. Phylogenies of nucleotide and derived amino acid sequences were reconstructed by several procedures, with three Mus species as outgroup. Duplications of the RNase 1 occurred after the divergence of Niviventer cremoriventer and Leopoldamys edwardsi from the other investigated species. Four groups of paralogous genes could be identified from specific amino acid sequence features in each of them. Low ratios of nonsynonymous-to-synonymous substitutions and the paucity of pseudogene features suggest functional gene products. One of the RNase 1 genes of R. norvegicus is expressed in the pancreas. RNases 1 were isolated from pancreatic tissues of R. rattus and R. exulans and submitted to N-terminal amino acid sequence analysis. In R. rattus, the orthologue of the expressed gene of R. norvegicus was identified, but in R. exulans, two paralogous gene products were found. The gene encoding for one of these had not yet been found by PCR amplification of genomic DNA. A well-defined group of orthologous sequences found in five investigated species codes for very basic RNases. Northern blot analysis showed expression of messenger RNA for this RNase in the spleen of R. norvegicus, but the protein product could not be identified. Evolutionary rates of RNase 1, expressed as nucleotide substitutions per site per 10(3) million years (Myr), vary between 5 and 9 in the lines leading to Mus, Niviventer, and Lepoldamys (on the basis of an ancestral date of mouse/rat divergence of 12.2 Myr) and between 20 and 50 in the lines to the other sequences after divergence from Niviventer and Leopoldamys (5.5 Myr).  相似文献   

10.
The complete mitochondrial (mt) genome of the gynogenetic triploid ginbuna (Carassius auratus langsdorfi, AZ3 line) has been cloned and sequenced. The genome consisted of 16,578 bp and encoded the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) in addition to a D-loop region, as described for other vertebrate mtDNAs. Comparison with other teleost mtDNAs demonstrated that the protein/rRNA-coding regions of the ginbuna were highly homologous both in length and nucleotide composition to those of the carp, indicating fairly close relationship between the triploid ginbuna and the carp. Although the size of the ginbuna D-loop was almost the same as that of the carp, the nucleotide sequence showed a moderate variation. More comprehensive sequence data of the D-loop regions will lead to the elucidation of phylogenetic relationships among Carassius auratus subspecies.  相似文献   

11.
Mitochondrial DNA (mtDNA) regions corresponding to two major tRNA gene clusters were amplified and sequenced for the Japanese pit viper, himehabu. In one of these clusters, which in most vertebrates characterized to date contains three tightly connected genes for tRNA(Ile), and tRNA(Gln), and tRNA(Met), a sequence of approximately 1.3 kb was found to be inserted between the genes for tRNA(Ile) and tRNA(Gln). The insert consists of a control-region-like sequence possessing some conserved sequence blocks, and short flanking sequences which may be folded into tRNA(Pro), tRNA(Phe), and tRNA(Leu) genes. Several other snakes belonging to different families were also found to possess a control-region-like sequence and tRNA(Leu) gene between the tRNA(Ile)and tRNA(Gln) genes. We also sequenced a region surrounded by genes for cytochrome b and 12S rRNA, where the control region and genes for tRNA(Pro) and tRNA(Phe) are normally located in the mtDNAs of most vertebrates. In this region of three examined snakes, a control-region- like sequence exists that is almost completely identical to the one found between the tRNA(Ile) and tRNA(Gln) genes. The mtDNAs of these snakes thus possess two nearly identical control-region-like sequences which are otherwise divergent to a large extent between the species. These results suggest that the duplicate state of the control-region- like sequences has long persisted in snake mtDNAs, possibly since the original insertion of the control-region-like sequence and tRNA(Leu) gene into the tRNA gene cluster, which occurred in the early stage of the divergence of snakes. It is also suggested that the duplicated control-region-like sequences at two distant locations of mtDNA have evolved concertedly by a mechanism such as frequent gene conversion. The secondary structures of the determined tRNA genes point to the operation of simplification pressure on the T psi C arm of snake mitochondrial tRNAs.   相似文献   

12.
Evolution of the cetacean mitochondrial D-loop region.   总被引:9,自引:0,他引:9  
We sequenced the mitochondrial DNA D-loop regions from two cetacean species and compared these with the published D-loop sequences of several other mammalian species, including one other cetacean. Nucleotide substitution rates, DNA sequence simplicity, possible open reading frames (ORFs), and potential RNA secondary structure were investigated. The substitution rate is an order of magnitude lower than would be expected on the basis of reports on human sequence variation in this region but are consistent with interspecific primate and rodent D-loop sequence variation and with estimates of substitution rates from whole mitochondrial genomes. Deletions/insertions are less common in the cetacean D-loop than in other vertebrate species. Areas of high sequence simplicity (clusters of short repetitive motifs) across the region correspond to areas of high sequence divergence. Three regions predicted to form secondary structures are homologous to such putative structures in other species; however, the presumptive structures most conserved in cetaceans are different from those reported for other taxa. While all three species have possible long ORFs, only a short sequence of seven amino acids is shared with other mammalian species, and those changes that had occurred within it are all nonsynonymous. We conclude that DNA slippage, in addition to point mutation, contributes to the evolution of the D-loop and that regions of conserved secondary structure in cetaceans and an ORF are unlikely to contribute significantly to the conservation of the central region.  相似文献   

13.
The control region (D-loop) of mitochondrial DNA (mtDNA) was amplified and sequenced for eight samples of the rhinogobies Rhinogobius maculafasciatus and R. giurinus from Taiwan and southern China. The control regions of both species are of 841–842 bp; the length of these sequences being the most compact among all known sequences in teleost fishes. Three conserved sequence blocks (CSB) were observed. The full D-loop and tRNA Phe gene sequences were determined and compared with other fishes. The interspecific sequence divergence between the two species is 11.3–11.7%; and the intraspecific variation in R. guirinus 0.8–1.8%. Results suggest that the control region of Rhinogobius is informative for phylogenetic reconstruction at both intraspecific and interspecific levels in this gobiid genus.  相似文献   

14.
The complete mitochondrial DNA (mtDNA) control region was amplified and directly sequenced in two species of shrew, Crocidura russula and Sorex araneus (Insectivora, Mammalia). The general organization is similar to that found in other mammals: a central conserved region surrounded by two more variable domains. However, we have found in shrews the simultaneous presence of arrays of tandem repeats in potential locations where repeats tend to occur separately in other mammalian species. These locations correspond to regions which are associated with a possible interruption of the replication processes, either at the end of the three-stranded D-loop structure or toward the end of the heavy-strand replication. In the left domain the repeated sequences (R1 repeats) are 78 bp long, whereas in the right domain the repeats are 12 bp long in C. russula and 14 bp long in S. araneus (R2 repeats). Variation in the copy number of these repeated sequences results in mtDNA control region length differences. Southern blot analysis indicates that level of heteroplasmy (more than one mtDNA form within an individual) differs between species. A comparative study of the R2 repeats in 12 additional species representing three shrew subfamilies provides useful indications for the understanding of the origin and the evolution of these homologous tandemly repeated sequences. An asymmetry in the distribution of variants within the arrays, as well as the constant occurrence of shorter repeated sequences flanking only one side of the R2 arrays, could be related to asymmetry in the replication of each strand of the mtDNA molecule. The pattern of sequence and length variation within and between species, together with the capability of the arrays to form stable secondary structures, suggests that the dominant mechanism involved in the evolution of these arrays in unidirectional replication slippage.   相似文献   

15.
Summary The evolution of the main regulatory region (D-loop) of the mammalian mitochondrial genome was analyzed by comparing the sequences of eight mammalian species: human, common chimpanzee, pygmy chimpanzee, dolphin, cow, rat, mouse, and rabbit. The best alignment of the sequences was obtained by optimization of the sequence similarities common to all these species.The two peripheral left and right D-loop domains, which contain the main regulatory elements so far discovered, evolved rapidly in a species-specific manner generating heterogeneity in both length and base composition. They are prone to the insertion and deletion of elements and to the generation of short repeats by replication slippage. However, the preservation of some sequence blocks and similar cloverleaf-like structures in these regions, indicates a basic similarity in the regulatory mechanisms of the mitochondrial genome in all mammalian species.We found, particularly in the right domain, significant similarities to the telomeric sequences of the mitochondrial (mt) and nuclear DNA ofTetrahymena thermophila. These sequences may be interpreted as relics of telomeres present in ancestral linear forms of mtDNA or may simply represent efficient templates of RNA primase-like enzymes.Due to their peculiar evolution, the two peripheral domains cannot be used to estimate in a quantitative way the genetic distances between mammalian species. On the other hand the central domain, highly conserved during evolution, behaves as a good molecular clock.Reliable estimates of the times of divergence between closely and distantly related species were obtained from the central domain using a Markov model and assuming nonhomogeneous evolution of nucleotide sites.  相似文献   

16.
Nucleotide sequences throughout the whole major noncoding region of mitochondrial DNA of 18 subjects were determined. Previously identified control elements were classified into three groups according to the degree of intraspecific nucleotide conservations: strictly conserved elements (LSP, HSP, Mt3, Mt3 on H-strand, mtTF1-element for HSP), relatively conserved elements (CSB-III, Mt4 on H-strand, and mtTF1-element for LSP), and variable elements (TAS, CSB-I, CSB-II). Moreover, alignment of nucleotide conservations disclosed a stretch of conserved sequence (5'-ATGCTTACAAGCAAG-3', nucleotide number 16, 194-16,208, designated as Mt5 element) in the middle of the hypervariable segment. Nucleotide conservation of this element was not only intraspecific but also interspecific.  相似文献   

17.
We have identified and determined the sequence and organization of a new rat satellite DNA in Rattus rattus, the roof rat. This satellite DNA, which we call R. rattus satellite I', consists of tandem arrays of a 185 base pair (bp) repeat unit that we call a'. a' is 86% homologous to a 185 bp portion of the 370 bp repeat unit of the previously described rat satellite [Pech et al. (1979) Nucleic Acids Res. 7, 417-432] present in the common laboratory rat species, R. norvegicus. We can thereby distinguish two 185 bp portions of the satellite I 370 bp repeat unit: "a" (homologous to a') and "b". Satellite I has the structure (a,b)n, and satellite I' has the structure (a')n. Like a, a' is only about 60% homologous to b and fails to hybridize to b. Although R. norvegicus and R. rattus contain about the same total concentration of satellite sequences, R. norvegicus contains essentially only the a,b type (satellite I), whereas R. rattus contains a' type (satellite I') and lesser amounts of the a,b type (satellite I). The a,b type (satellite I) in R. rattus is very similar to that in R. norvegicus as judged both by hybridization and by the presence of all but one of the major restriction enzyme sites that characterize the R. norvegicus satellite I. In R. rattus the a' and a,b repeat units are not detectably present in the same tandem array. All of the sequence differences between a' (R. rattus) and a (R. norvegicus) can be accounted for by simple base substitutions, and the implication of this and other features of rat satellite DNA structure for satellite DNA evolution are discussed.  相似文献   

18.
Epizootiological surveys on hantavirus infections in rodents were carried out in various areas of Japan, including the four major islands of Hokkaido, Honshu, Shikoku, and Kyushu from 2000 to 2003. A total of 1,221 rodents and insectivores were captured. Seropositive animals were found in Apodemus (A.) speciosus (5/482, 1.0%), Rattus (R.) norvegicus (4/364, 1.1%), R. rattus (3/45, 6.7%), and Clethrionomys (C.) rufocanus (7/197, 3.6%). The partial S segment was amplified from one seropositive R. rattus captured at Hakodate. The nucleotide sequence showed 96% identity with the Seoul virus (SEOV) prototype strain SR-11. In addition, we conducted an epidemiological survey on human hantavirus infection in a high-risk population, the personnel of the Japan Ground Self-defense Force on Hokkaido. One out of 207 human blood samples was positive for anti-hantavirus antibody by IFA, ELISA, and WB analysis. The result of the serotype specific ELISA indicates that this individual acquired SEOV infection. This study indicates that A. speciosus, R. norvegicus, R. rattus, and C. rufocanus carry hantaviruses as the reservoir animals in Japan. Infected R. rattus and R. norvegicus in port areas could be the sources of human SEOV infection and a threat to travelers and individuals working in seaports.  相似文献   

19.
Streptobacillus moniliformis is an etiological agent of rat-bite fever and Haverhill fever in human infection. As the currently available methods for identifying the causative bacteria are not satisfactory, we attempted to establish them by PCR using newly designed primers for the 16S rRNA gene of S. moniliformis. We then determined the prevalence of Streptobacillus spp. in two species of feral rats that inhabit an urban region in Japan, because information on the prevalence of the bacteria in feral rats is obscure. The use of PCR with newly designed primers showed that an extremely high proportion of R. norvegicus harbored the bacteria (61/66, 92%), whereas the prevalence was only 58% in R. rattus (30/52). The nucleotide sequence analysis of the 16S rRNA gene of Streptobacillus spp. isolated from oral swabs of feral rats showed at least two different types of bacteria among isolates from R. norvegicus and R. rattus.  相似文献   

20.
D Dunon-Bluteau  M Volovitch  G Brun 《Gene》1985,36(1-2):65-78
Extensive corrections of the nucleotide sequence of the Xenopus laevis mitochondrial (mt) displacement (D) loop and surrounding genes [Wong et al., Nucl. Acids Res. 11 (1983) 4977-4995] are reported, including addition of two stretches of nucleotides and 60 scattered modifications. The additional sequences presented here correspond to the apocytochrome b gene, the tRNAGlu gene and part of URF6. This allows us to propose a conformational model for the X. laevis apocytochrome b protein and also permits comparisons with mammalian mtDNA. The D-loop sequence is poorly conserved except for sequences involved in the regulation of the mt genome (conserved sequence blocks and the DNA polymerase stop sequences). On the other hand, all genes show marked conservation both of their nucleotide sequence and their respective location on the mt genome. Organization of the genetic information described for mammalian mtDNA also holds for the X. laevis mtDNA. This result strongly suggests that all animal vertebrate mtDNAs have followed the same evolutionary pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号