首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract C1-metabolizing bacteria were analyzed for their corrinoids. The autotrophic phototrophe Chloroflexus aurantiacus contains predominantly the light-sensitive coenzyme B12. The corrinoid could be teh prostethic group of a methylmalonyl-CoA mutase, which is involved in the CO2 fixing reaction sequence from proplonyl-CoA to succinyl CoA. Methanobacterium thermoautotrophicum and Sporomusa ovata contain only traces of light-sensitive corrinoids, indicating that the demethylation reaction is favored, if these corrinoids are involved in methyl transfer reactions. The chemical structure of the unique p -cresolyl cobamide is specific for the acetogenic bacterium S. ovata , rather than the corrinoid 'factor III' for methanogenic bacteria.  相似文献   

2.
CO2 reduction to acetate in anaerobic bacteria   总被引:1,自引:0,他引:1  
Abstract The reduction of 2 CO2 to acetate is catalyzed in the energy metabolism of homoacetogenic bacteria, which couple acetate formation to the synthesis of ATP. The carboxyl group of acetate is formed from CO2 via reduction to a bound carbonyl ([CO]), a redution that requires the input of methaolic energy when hydrogen is used as the electron donor. The methyl group of acetate is formed via formate and tetrahydrofolate bound C1 intermediates including methyl tetrahydrofolate as the intermediates. The methyl group is the 'condensed' with the carbonyl and CoA to acetyl-CoA, which is converted to acetate in the energy metabolism or to cell carbon in the anabolism of the bacteria. The mechanism of ATP synthesis coupled to CO2 reduction to acetate is still unclear. The only reaction sufficiently exergonic is the reduction of methylene tetrahydrofolate to methyl tetrahydrofolate. Indirect evidence was presented that this reaction in homoacetogens might be coupled to the electrogenic transport of sodium across the cytoplasmic membrane. The sodium gradient formed via methylene-THF reduction could be transformed into a proton gradient via a sodium/proton antiporter. ATP would then be synthesized by a proton translocating ATP synthase.  相似文献   

3.
Trade-offs between selected and nonselected environments are often assumed to exist during adaptation. This phenomenon is prevalent in microbial metabolism, where many organisms have come to specialize on a narrow breadth of substrates. One well-studied example is methylotrophic bacteria that can use single-carbon (C1) compounds as their sole source of carbon and energy, but generally use few, if any, multi-C compounds. Here, we use adaptation of experimental populations of the model methylotroph, Methylobacterium extorquens AM1, to C1 (methanol) or multi-C (succinate) compounds to investigate specialization and trade-offs between these two metabolic lifestyles. We found a general trend toward trade-offs during adaptation to succinate, but this was neither universal nor showed a quantitative relationship with the extent of adaptation. After 1500 generations, succinate-evolved strains had a remarkably bimodal distribution of fitness values on methanol: either an improvement comparable to the strains adapted on methanol or the complete loss of the ability to grow on C1 compounds. In contrast, adaptation to methanol resulted in no such trade-offs. Based on the substantial, asymmetric loss of C1 growth during growth on succinate, we suggest that the long-term maintenance of C1 metabolism across the genus Methylobacterium requires relatively frequent use of C1 compounds to prevent rapid loss.  相似文献   

4.
Arthrobacter nicotianae KCC B35 isolated from blue-green mats densely covering oil sediments along the Arabian Gulf coast grew well on C10 to C40 n -alkanes as sole sources of carbon and energy. Growth on C20 to C40 alkanes was even better than on C10 to C18 alkanes. Biomass samples incubated for 6 h with n -octacosane (C28) or n -nonacosane (C29) accumulated these compounds as the predominant constituent alkanes of the cell hydrocarbon fractions. The even chain hexadecane C16 and the odd chain pentadecane C15 were the second dominant constituent alkanes in C28 and C29 incubated cells, respectively. n -Hexadecane-incubated cells accumulated in their lipids higher proportions of C16-fatty acids than control cells not incubated with hydrocarbons. On the other hand, C28 and C29-incubated cells did not contain any fatty acids with the equivalent chain lengths, but the fatty acid patterns of the cell lipids suggest that there should have been mid-chain oxidation of these very long chain alkanes. This activity qualifies A. nicotianae KCC B35 to be used in cocktails for bioremediating environments polluted with heavy oil sediments.  相似文献   

5.
The acetyl-CoA pathway of autotrophic growth   总被引:3,自引:0,他引:3  
Abstract The most direct conceivable route for synthesis of multicarbon compounds from CO2 is to join two molecules of CO2 together to make a 2-carbon compound and then polymerize the 2-carbon compound or add CO2 successively to the 2-carbon compound to make multicarbon compounds. Recently, it has been demonstrated that the bacterium, Clostridium thermoaceticum , grows autotrophically by such a process. The mechanism involves the reduction of one molecule of CO2 to a methyl group and then its combination with a second molecule of CO2 and CoA to form acetyl-CoA. We have designated this autotrophic pathway the acetyl-CoA pathway [1]. Evidence is accumulating that this pathway is utilized by other bacteria that grow with CO2 and H2 as the source of carbon and energy. This group includes bacteria which, like C. thermoaceticum , produce acetate as a major end product and are called acetogens or acetogenic bacteria. It also includes the methane-producing bacteria and sulfate-reducing bacteria.
The purpose of this review is to examine critically the evidence that the acetyl-CoA pathway occurs in other bacteria by a mechanism that is the same or similar to that found in C. thermoaceticum . For this purpose, the mechanism of the acetyl-CoA pathway, as found in C. thermoaceticum , is described and hypothetical mechanisms for other organisms are presented based on the acetyl-CoA pathway of C. thermoaceticum . The available data have been reviewed to determine if the hypothetical schemes are in accord with presently known facts. We conclude that the formation of acetyl-CoA by other acetogens, the methanogens and sulphate-reducing bacteria occurs by a mechanism very similar to that of C. thermoaceticum .  相似文献   

6.
Abstract Two constitutive acetyl-CoA acetyltransferases (3-ketothiolases A and B) were purified from Alcaligenes eutrophus . Enzyme A was active with only acetoacetyl-CoA and 3-ketopentanoyl-CoA, whereas enzyme B was active with all the 3-ketoacyl-CoAs (C4−C10) tested. Enzyme A appeared to be a tetramer ( M r 70 000) with identical subunits ( M r 44 000) and enzyme B had a similar M r of 168 000 (containing M r 46 000 subunits). Enzymes A and B had isoelectric points of 5.0 and 6.4, respectively. The stoichiometry of the reactions catalysed by each enzyme was confirmed. K m values of 44 μM and 394 μM for acetoacetyl-CoA, and 16 μM and 93 μM for CoA, were determined with enzymes A and B, respectively. Enzymes A and B gave K m values of 1.1 mM and 230 μM, respectively, for acetyl-CoA. The condensation reaction was potently inhibited by CoA in both cases.  相似文献   

7.
Microbial growth on carbon monoxide   总被引:14,自引:0,他引:14  
The utilization of carbon monoxide as energy and/or carbon source by different physiological groups of bacteria is described and compared. Utilitarian CO oxidation which is coupled to the generation of energy for growth is achieved by aerobic and anaerobic eu- and archaebacteria. They belong to the physiological groups of aerobic carboxidotrophic, facultatively anaerobic phototrophic, and anaerobic acetogenic, methanogenic or sulfate-reducing bacteria. The key enzyme in CO oxidation is CO dehydrogenase which is a molybdo iron-sulfur flavoprotein in aerobic CO-oxidizing bacteria and a nickel-containing iron-sulfur protein in anaerobic ones. In carboxidotrophic and phototrophic bacteria, the CO-born CO2 is fixed by ribulose bisphosphate carboxylase in the reductive pentose phosphate cycle. In acetogenic, methanogenic, and probably in sulfate-reducing bacteria, CODH/acetyl-CoA synthase directly incorporates CO into acetyl-CoA.In plasmid-harbouring carboxidotrophic bacteria, CO dehydrogenase as well as enzymes involved in CO2 fixation or hydrogen utilization are plasmid-encoded. Structural genes encoding CO dehydrogenase were cloned from carboxidotrophic, acetogenic and methanogenic bacteria. Although they are clustered in each case, they are genetically distinct.Soil is a most important biological sink for CO in nature. While the physiological microbial groups capable of CO oxidation are well known, the type and nature of the microorganisms actually representing this sink are still enigmatic. We also tried to summarize the little information available on the nutritional and physicochemical requirements determining the sink strength. Because CO is highly toxic to respiring organisms even in low concentrations, the function of microbial activities in the global CO cycle is critical.  相似文献   

8.
Abstract: Fatty acids are key intermediates in methanogenic degradation of organic matter in sediments as well as in anaerobic reactors. Conversion of butyrate or propionate to acetate, (CO2), and hydrogen is endergonic under standard conditions, and becomes possible only at low hydrogen concentrations (10-4-10-5 bar). A model of energy sharing between fermenting and methanogenic bacteria attributes a maximum amount of about 20 kJ per mol reaction to each partner in this syntrophic cooperation system. This amount corresponds to synthesis of only a fraction (one-third) of an ATP to be synthesized per reaction. Recent studies on the biochemistry of syntrophic fatty acid-oxidizing bacteria have revealed that hydrogen release from butyrate by these bacteria is inhibited by a protonophore or the ATPase inhibitor DCCD ( N , N '-dicyclohexyl carbodiimide), indicating that a reversed electron transport step is involved in butyrate or propionate oxidation. Hydrogenase, butyryl-CoA dehydrogenase, and succinate dehydrogenase acitivities were found to be partially associated with the cytoplasmic membrane fraction. Also glycolic acid is degraded to methane and CO2 by a defined syntrophic coculture. Here the most difficult step for hydrogen release is the glycolate dehydrogenase reaction ( E '0=−92 mV). Glycolate dehydrogenase, hydrogenase, and ATPase were found to be membrane-bound enzymes. Membrane vesicles produced hydrogen from glycolate only in the presence of ATP; protonophores and DCCD inhibited this hydrogen release. This system provides a suitable model to study reversed electron transport in interspecies hydrogen transfer between fermenting and methanogenic bacteria in methanogenic biomass degradation.  相似文献   

9.
The rate of degradation of n -alkanes C12-C18, in petrol (Slovene diesel) in an aqueous system, by free and immobilized Pseudomonas fluorescens in shaking flasks was investigated. Cells were immobilized to a biosupport, Biofix, and a biosorbant, Drizit. Analysis of cellular growth of the free and immobilized bacteria over 8 d of incubation with diesel as the sole carbon source, showed a reduction in the lag phase in the immobilized cultures in comparison to the free system. The free system degraded 52·3% of C12 and 11·6% of C13, but C14-C18 were not degraded. In comparison to the free system and diesel which had not been exposed to experimental conditions (unexposed), the immobilized systems degraded significantly more of C13-C18. Biofix-immobilized cells degraded 14·8% of C12 and an average of 53·5% of C13-C18. Drizit-immobilized cells degraded 24·5% of C12, 52·4% of C13 and an average of 91·2% of C14-C18. This study shows the successful use of immobilized bacteria technology to enhance the degradation of diesel in an aqueous system.  相似文献   

10.
Abstract A defined 3-chlorobenzoate-degrading methanogenic consortium was constructed by recombining key organisms isolated from a 3-chlorobenzoate-degrading methanogenic sludge enrichment. The organisms comprise a three-tiered food chain which includes: (1) reductive dechlorination of 3-chlorobenzoate; (2) oxidation of benzoate to acetate, H2 and CO2; (3) removal of H2 plus CO2 by conversion into methane. The defined consortium, consisting of a dechlorinating organism (DCB-1), a benzoate degrader (BZ-1) and a lithotrophic methanogen ( Methanospirillum strain PM-1) grew well in a basal salts medium supplemented with 3-chlorobenzoate (3.2 mM) as the sole energy source. The chlorine released from the aromatic ringe was recovered in stoichiometric amounts as the chloride ion. The reducing power required for reductive dechlorination was obtained from the hydrogen produced in the acetogenic oxidation of benzoate. One-third of the benzoate-derived hydrogen was recycled via the reductive dechlorination of 3-chlorobenzoate, indicating that the consortium operated as a food web rather than a food chain.  相似文献   

11.
Abstract Three kinds of enzymes, designated A, B and C, involved in n -alkane oxidation were found in the cytoplasm of n -alkanegrown Acinetobacter sp. M-1. All catalyzed the dioxygenation of n -alkanes to the corresponding n -alkyl hydroperoxides. Purified enzyme A consisted of four identical subunits having a molecular mass of 72 kDa. The enzyme was strongly inhibited by several iron-chelating agents, such as o -phenanthroline, 8-hydroxyquinoline and α,α'-dipyridyl, and could be distinguished from enzyme C, a Cu2+-requiring flavoprotein. Enzyme B was relatively unstable on purification. The three enzymes used n -alkanes, n -alkenes, and aryl compounds with longer alkyl side chains as substrates. Enzymes B and C were more active toward relatively short n -alkanes (C12–16). Enzyme A oxidized solid n -alkanes well, the most preferable substrate being tetracosane (C24). Enzyme A is responsible for about 80% of the total activity found in the soluble fraction of n -alkane-grown Acinetobacter sp. M-1, indicating that the enzyme plays a major role during growth on solid n -alkanes.  相似文献   

12.
Abstract. Gas exchange measurements were made on single leaves of three C3 and one C4 species at air speeds of 0.4 and 4.0 m s−1 to determine if boundary layer conductance substantially affected the substomatal pressure of carbon dioxide. Boundary layer conductances to water vapour were 0.4 to 0.5 mol m−2 s−1 at the lower air speed, and 1.2 to 1.5 mol m−2 s−1 at the higher air speed. Substomatal carbon dioxide pressures were about 5 Pa lower at low boundary layer conductance in the C3 species, and about 3 Pa lower in the C4 species when measurements were made at high and moderate photosynthetic photon flux densities. No evidence of stomatal adjustment to altered boundary layer conductance was found. Photosynthetic rates at high photon flux densities were reduced by about 20% at the low air speed in the C3 species. The commonly reported values of substomatal carbon dioxide pressure for C3 and C4 species were found to occur only when measurements were made at the higher air speed.  相似文献   

13.
Anaerobic bacteria involved in the degradation of long-chain fatty acids (LCFA), in the presence of sulfate as electron acceptor, were studied by combined cultivation-dependent and molecular techniques. The bacterial diversity in four mesophilic sulfate-reducing enrichment cultures, growing on oleate (C18:1, unsaturated LCFA) or palmitate (C16:0, saturated LCFA), was studied by denaturing gradient gel electrophoresis (DGGE) profiling of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments. These enrichment cultures were started using methanogenic inocula in order to assess the competition between methanogenic communities and sulfate-reducing bacteria. Phylogenetic affiliation of rRNA gene sequences corresponding to predominant DGGE bands demonstrated that members of the Syntrophomonadaceae , together with sulfate reducers mainly belonging to the Desulfovibrionales and Syntrophobacteraceae groups, were present in the sulfate-reducing enrichment cultures. Subculturing of LCFA-degrading methanogenic cultures in the presence of sulfate resulted in the inhibition of methanogenesis and, after several transfers, archaea could no longer be detected by real-time PCR. Competition for hydrogen and acetate was therefore won by sulfate reducers, but acetogenic syntrophic bacteria were the only known LCFA-degrading organisms present after subculturing with sulfate. Principal component analysis of the DGGE profiles from methanogenic and sulfate-reducing oleate- and palmitate-enrichment cultures showed a greater influence of the substrate than the presence or absence of sulfate, indicating that the bacterial communities degrading LCFA in the absence/presence of sulfate are rather stable.  相似文献   

14.
Denitrifying bacteria were enriched from freshwater sediment with added nitrate as electron acceptor and crude oil as the only source of organic substrates. The enrichment cultures were used as laboratory model systems for studying the degradative potential of denitrifying bacteria with respect to crude oil constituents, and the phylogenetic affiliation of denitrifiers that are selectively enriched with crude oil. The enrichment culture exhibited two distinct growth phases. During the first phase, bacteria grew homogeneously in the aqueous phase, while various C1–C3 alkylbenzenes, but no alkanes, were utilized from the crude oil. During the second phase, bacteria also grew that formed aggregates, adhered to the crude oil layer and emulsified the oil, while utilization of n -alkanes (C5 to C12) from the crude oil was observed. During growth, several alkylbenzoates accumulated in the aqueous phase, which were presumably formed from alkylbenzenes. Application of a newly designed, fluorescently labelled 16S rRNA-targeted oligonucleotide probe specific for the Azoarcus / Thauera group within the β-subclass of Proteobacteria revealed that the majority of the enriched denitrifiers affiliated with this phylogenetic group.  相似文献   

15.
Ladderane lipids are unusual membrane lipids of bacteria that anaerobically oxidize ammonium to dinitrogen gas (anammox). Ladderane lipids contain linearly concatenated cyclobutane rings for which the pathway of biosynthesis is currently unknown. To investigate the possible biosynthetic routes of these lipids, 2-13C-labelled acetate was added to a culture of the anammox bacterium Candidatus Brocadia fulgida. Labelling patterns obtained by high-field 13C nuclear magnetic resonance spectroscopy of isolated lipids indicated that C . Brocadia fulgida synthesizes C16:0 and iso C16:0 fatty acids according to the known pathway of type II fatty acid biosynthesis. The 13C-labelling pattern of the C8 alkyl chain of the C20 [3] ladderane monoether also indicated the use of this route. However, carbon atoms in the cyclobutane rings and the cyclohexane ring were nonspecifically labelled and did not correspond to known patterns of fatty acid synthesis. Taken together, our results indicate that it is unlikely that ladderane lipids are formed from the cyclization of polyunsaturated fatty acids as hypothesized previously and suggest an alternative, although as yet unknown, pathway of biosynthesis.  相似文献   

16.
Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8 / LACS1 , one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C24) were elevated more than 155%. The C16 cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C18 monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C20–C30, with highest activity for C30 acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C16 but not C18 cutin monomers are reduced in lacs1 , and C16 acids are the next most preferred acid (behind C30) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C16 monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C16) fatty acids for cutin synthesis.  相似文献   

17.
The relationships between non‐radiative energy dissipation and the carotenoid content, especially the xanthophyll cycle components, were studied in sun and shade leaves of several plants possessing C3 ( Hedera helix and Laurus nobilis ) or C4 ( Zea mays and Sorghum bicolor ) photosynthetic pathways. Sun‐shade acclimation caused marked changes in the organisation and function of photosynthetic apparatus, including significant variation in carotenoid content and composition. The contents of zanthophyll cycle pigments were higher in sun than in shade leaves in all species, but this difference was considerably greater in C3 than in C4 plants. The proportion of photoconvertible violaxanthin, that is the amount of violaxanthin (V) which can actually be de‐epoxidised to zeaxanthin, was much greater in sun than in shade leaves. The amount of photoconvertible V was always linearly dependent on the chlorophyll a/b ratio, although the slope of the relationship varied especially between C3 and C4 species. The leaf zeaxanthin and antheraxanthin contents were correlated with non‐radiative energy dissipation in all species under different light environments. These relationships were curvilinear and variable between sun and shade leaves and between C3 and C4 species. Hence, the dissipation of excess energy does not appear to be univocally dependent on zeaxanthin content and other photoprotective mechanisms may be involved under high irradiance stress. Such mechanisms appear largely variable between C3 and C4 species according to their photosynthetic characteristics.  相似文献   

18.
Abstract Hyphomicrobium X was grown on a range of mixtures of methylamine and ethanol at various dilution rates in continuous cultures. It was shown that both substrates were utilized simultaneously at all dilution rates below μmax ethanol, the biomass being the sum of the biomass obtained during growth on the single substrates alone. No evidence was observed for a redistribution of the carbon-flow nor the ability to utilize the 'poorer' growth substrate-ethanol, at dilution rates greater than μmax ethanol. Work is presented which suggests that the assimilatory pathway enzymes for either the C1- or the C2-compound are regulated coordinately, but separately from the dissimilatory pathway enzymes associated with that compound.  相似文献   

19.
Control of nitrogen and carbon metabolism in root nodules   总被引:4,自引:0,他引:4  
Because legume root nodules have high rates of carbon and nitrogen metabolism, they are ideal for the study of plant physiology, biochemistry and molecular biology. Many plant enzymes involved in carbon and nitrogen assimilation have enhanced activity and enzyme protein in nodules as compared to other plant organs. For all intents and purposes the interior of the root nodule is O2 limited. Both plant and bacterial components of effective root nodules have unique adaptive features for maximizing carbon and nitrogen metabolism in an O2-limited environment. Plant glycolysis appears to be shunted to malic acid synthesis with further reductive synthesis to fumarate and succinate. Nodule bacteroids utilize these organic acids for the energy to fuel nitrogenase activity. Activities of the plant enzymes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), malate dehydrogenase (MDH, EC 1.1.1.37) and aspartate aminotransferase (AAT, EC 2.6.1.1), which are very high in nodules, may mediate the flux of carbon between organic and amino acid pools. Dark CO2 fixation via nodule PEPC can provide up to 25% of the carbon needed for malate and aspartate synthesis. At least three of the plant proteins showing enhanced expression in root nodules are O2 regulated. Isolation of alfalfa cDNAs encoding PEPC, AAT, NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) and aldolase (EC 4.1.2.13) will offer new tools to assess molecular events controlling nodule carbon and nitrogen metabolism.  相似文献   

20.
Abstract The methylotrophic yeasts, Hansenula polymorpha and Candida boidinii , and the methylotrophic Gram-negative bacteria, Paracoccus denitrificans and Thiobacillus versutus (but not Methylophaga marina ), contain NAD/GSH-dependent formaldehyde dehydrogenase when grown on C1-compounds. The enzymes appeared to be similar to each other and to the mammalian counterparts with respect to substrate specificity, including the ability to act as an alcohol dehydrogenase class III. The Gram-positive bacteria, Amycolatopsis methanolica and Rhodococcus erythropolis , possess NAD/Factor-dependent formaldehyde dehydrogenase when grown on C1-compounds or on C1-unit-containing substrates, respectively. These enzymes also exhibit alcohol dehydrogenase class III activity. Thus, like the mammalian ones, methylotrophic formaldehyde dehydrogenases show dual substrate specificity, suggesting that this is an inherent property of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号