首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of microtubules, neurofilaments, and microtubule-associated proteins were investigated by turbidity and falling-ball viscometry measurements. We found evidence of endogenous GTPase activity in neurofilaments and microtubule-associated proteins (MAPs) in preparations that do not include urea or heat treatment, respectively. The absence or presence of either adenyl-5'-yl imidodiphosphonic acid or a GTP-regenerating system markedly influenced observed polymerization and gelation characteristics. Most significantly, the apparent viscosity of neurofilament and microtubule samples did not display a biphasic optimal MAP concentration profile when a GTP-regenerating system was operant. Likewise, GTP regeneration promoted the recovery of gelation following mechanical disruption of neurofilament/MAP/microtubule mixtures. These and other observations require some reassessment of proposed roles for microtubule-associated proteins in modulating neurofilament-microtubule interactions in vitro.  相似文献   

2.
Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and the two diastereoisomers of guanosine 5'-O-(2-thiotriphosphate) (GTP beta S) were prepared enzymatically, and their interactions with tubulin and microtubule-associated proteins (MAPs) in 0.1 M 2-(N-morpholino)ethanesulfonate, 0.5 mM MgCl2 were examined. GTP gamma S did not support microtubule assembly but instead inhibited the reaction. This analog was 1.5-2 times more potent than GDP in inhibiting both tubulin polymerization and GTP hydrolysis under conditions in which these reactions were dependent on MAPs. In contrast to the analog's inhibitory effects on polymerization and hydrolysis, however, radiolabeled GTP gamma S was only feebly bound by purified tubulin at 0 degrees C relative to the binding of GDP and GTP. There was a marked increase in the amount of GTP gamma S bound when the reaction temperature was raised to 37 degrees C or when MAPs were included in the reaction mixture. Only when both MAPs were present and the higher reaction temperature was used did the binding of GTP gamma S exceed that of GDP. Since substitution of sulfur for oxygen in a molecule should decrease its hydrophilic properties, these findings suggest that the exchangeable nucleotide binding site of tubulin becomes more hydrophobic at higher temperatures and in the presence of MAPs. The two isomers of GTP beta S were able to support MAP-dependent polymerization, although a 50-100-fold higher concentration of the analogs as compared to GTP was required. Neither isomer of GTP beta S had a significant inhibitory effect on GTP hydrolysis dependent on tubulin + MAPs.  相似文献   

3.
Mammalian neurofilaments prepared from brain and spinal cord by either of two methods partially inhibit the in vitro assembly of microtubules. This inhibition is shown to be due to the association of a complex of high molecular weight microtubule-associated proteins (MAP1 and MAP2) and tubulin with the neurofilament. Further analysis of the association reveals a saturable binding of purified brain MAPs to purified neurofilaments with a Kd of 10(-7) M. Purified astroglial filaments neither inhibit microtubule assembly nor show significant binding of MAPs. It is proposed that the MAPs might function as one element in a network of intraorganellar links in the cytoplasm.  相似文献   

4.
Clonal cells (N18) of the mouse neuroblastoma C-1300 can be induced to undergo a morphological differentiation characterized by the outgrowth of very long neurites (> 150 microns) that contain many microtubules. Because the marked increase in the number and length of microtubules is apparently not due to an increase in the concentration of tubulin subunits, the possible role of additional macromolecules in the regulation of tubulin polymerization during neurite formation by N18 cells was examined. Using an in vitro system where the polymerization of low concentrations (< 4 mg/ml) of purified brain tubulin requires microtubule-associated proteins (MAPs), high-speed supernates (250,000 g) from neuroblastoma and glioma cells were assayed for their ability to replace MAPs in the polymerization of brain tubulin. Only the supernates from "differentiated" N18 cells were polymerization competent. Electron microscope observations of these supernates failed to demonstrate the presence of nucleation structures (rings or disks). The active factor(s) sedimented at approximately 7S on sucrose gradient centrifugation and eluted from 4B Sepharose in the region of 170,000 mol wt proteins. Furthermore, the inactive supernates from other cells did not inhibit polymerization when tested in the presence of limiting MAPs. Thus, microtubule formation accompanying neurite outgrowth in neuroblastoma cells appears to be regulated by the presence of additional macromolecular factor(s) that may be functionally equivalent to the MAPs found with brain microtubules.  相似文献   

5.
Vinblastine induces brain tubulin to assemble into spirals. This process is stimulated by microtubule-associated proteins (MAPs) which copolymerize with brain microtubules assembled in vitro. When the carboxy terminal of tubulin is removed by subtilisin digestion, vinblastine readily induces the aggregation of tubulin into spiral-like or circular structures, even in the absence of MAPs. These results suggest that in the absence of MAPs, the carboxy-terminal domain of tubulin may inhibit vinblastine-induced polymerization of tubulin into spiral-like structures.  相似文献   

6.
Vinblastine, a plant alkaloid which inhibits tubulin polymerization, stimulated an ATPase activity in microtubules. When microtubule proteins were separated into microtubule-associated proteins (MAPs) and tubulin by phosphocellulose column chromatography, vinblastine did not stimulate an ATPase activity recovered in the MAPs fraction unless tubulin was present. Therefore, vinblastine is considered to act through its binding to the tubulin molecule on MAPs ATPase. Divalent cations that activate tubulin-dependent MAPs ATPase activity were also required for the stimulation by vinblastine. In the presence of Ca2+ and vinblastine the ATPase activity was most active and the extent of stimulation reached about 200% of the original level in the absence of vinblastine. Half-maximal stimulation was attained when the molar ratio of vinblastine to tubulin was 0.5. The concentration of tubulin for half-maximal stimulation was increased in the presence of vinblastine, while divalent cation requirements were decreased. Several factors such as KCl (100 mM), alkaline pH (pH 7.5), and low temperature (10 degrees C) were not responsible for the disappearance of the stimulation. Vincristine stimulated tubulin-dependent MAPs ATPases activity as vinblastine did, whereas the activity was scarcely affected by colchicine, podophyllotoxin, strychnine, and chlorpromazine. Actin had no effect on MAPs ATPase activity in the absence and presence of vinblastine when it was used in place of tubulin.  相似文献   

7.
Abstract: Intact neurofilaments (NF) purified from mammalian brain and spinal cord promote the assembly of microtubules in solutions of pure phosphocellulose (PC)-purified tubulin. This assembly is temperature-dependent and is inhibited by mitotic spindle inhibitors. The ability of NF to induce microtubule formation is 20% of that of purified microtubule-associated proteins (MAPs), whereas MAPs comprise less than 5% of the protein in the NF preparations. The inducing activity of NF is rapidly lost on boiling. When intact NF are incubated with PC-tubulin and then centrifuged, tubulin is sedimented together with the filaments. This association is inhibited by colchicine and podophyllotoxin and is cold-sensitive. NF purified to homogeneity under denaturing conditions and then reassembled completely lack the ability to promote the assembly of PC-tubulin or to bind tubulin on a centrifugation assay. No MAPs are present in these preparations, though these filaments have the ability to bind exogenous MAPs. While these experiments do not rule out an intrinsic microtubule-assembly-promoting activity, they suggest that this activity is due to nontriplet proteins in the preparation, most likely filament-associated MAPs.  相似文献   

8.
Taxol, an antimitotic agent that induces microtubule assembly, stimulated tubulin-dependent Mg2+-ATPase activity of microtubule-associated proteins (MAPs). A concentration-dependent increase in the rate of ATP hydrolysis was observed. Taxol acted through its binding to the tubulin molecule on MAP ATPase, and maximal stimulation, which was found at approximately equal concentrations of taxol and tubulin, reached about 140% of the original level in the absence of taxol. Taxol enhanced ATP hydrolysis by a mixture of MAPs and tubulin, and this continued at a steady linear rate even when the polymerization had approached a plateau. In the presence of taxol, a large portion of ATPase activity and protein was recovered in the pellet after centrifugation at 70,000 g for 60 min at 25 degrees C. Both colchicine and podophyllotoxin inhibited taxol-stimulated ATPase activity via the same mechanism by which they inhibited taxol-induced microtubule polymerization. The stimulation by taxol was not found in the presence of Ca2+ alone but required Mg2+. We conclude that tubulin effectively stimulates Mg2+-ATPase activity of MAPs under conditions that induce tubulin polymerization.  相似文献   

9.
Carlier et al. (1988, Biochemistry 27, 3555-3559; 1989, Biochemistry 28, 1783-1791) described enhancement of tubulin polymerization and stabilization of glycerol-induced microtubules by BeF3- (by addition of both BeSO4 and NaF to reaction mixtures). We were able to confirm the stabilization of glycerol-induced polymer reported by these workers, provided Mg2+ was also present in the reaction. When we examined polymerization dependent on microtubule-associated proteins (MAPs), however, we obtained very different results. BeF3- had no significant effect on this reaction, or the polymer formed, under any condition examined. Lower concentrations of BeSO4 alone, in contrast to a negligible effect in glycerol, enhanced polymerization with MAPs provided the concentrations of both Mg2+ and GTP were low; and Be2+ stabilized the polymer, if the GTP concentration was low, at both low and high Mg2+ concentrations. Higher concentrations of BeSO4 precipitated tubulin, an effect which was not affected by Mg2+, partially prevented but not reversed by MAPs, and prevented or reversed by either NaF or nucleotides at adequate concentrations. These results suggest that Be2+ binds at site(s) distinct from Mg2+ site(s), and that partial occupancy of these site(s) at lower Be2+ concentrations enhances tubulin polymerization and polymer stability, while extensive occupancy at higher Be2+ concentrations results in tubulin precipitation. Effects of Be2+ and BeF3- on polymerization dependent on dimethyl sulfoxide or glutamate were also evaluated. The dimethyl sulfoxide system displayed properties similar to those of the glycerol system, while the glutamate system was similar to the MAPs system.  相似文献   

10.
Poly(L-glutamic acid) (PGA) suppresses the polymerization of porcine brain microtubule proteins and induces the depolymerization in vitro in a concentration-dependent manner. The extent of inhibition increases with increasing molecular weight of the PGA tested. A 50% inhibition of the protein polymerization was observed at a PGA (molecular weight = 60,000) to microtubule protein ratio of 0.04 (w/w), and complete inhibition was obtained at a ratio of 0.07. Such an inhibition on the polymerization by PGA is greatly decreased when Mg2+ is present at a higher concentration. The addition of PGA raises the critical concentration of microtubule proteins necessary for assembly. During incubation with PGA, microtubule proteins retain the ability to assemble, i.e., substoichiometric amounts of taxol considerably relieve the inhibition of assembly by PGA. PGA interacts with microtubule-associated proteins (MAPs) preferentially, because the amount of MAPs binding to PGA-Sepharose 4B is much larger than that of tubulin. Tau proteins were observed only in adsorbed fractions, while MAP-2 was present in both unbound and adsorbed fractions.  相似文献   

11.
Tubulin was extracted from spindles isolated from embryos of the sea urchin Strongylocentrotus purpuratus, repolymerized in vitro, and purified through three cycles of temperature-dependent assembly and disassembly. In addition to the tubulin, these preparations contain a protein of 80 kdaltons and a small but variable amount of actin. At 37 degrees C, the tubulin polymerizes with a critical concentration of 0.15-0.2 mg/ml into smooth-walled polymers which contain predominantly 14 protofilaments. Removal of the 80 kdalton protein and the actin by DEAE-chromatography does not change the critical concentration for polymerization. At 15 degrees C, which is within the range of physiological temperatures for S. purpuratus embryos, the spindle tubulin will self-assemble, but the rate of total polymer formation is very slow, requiring hours in the test tube. This rate can be increased by shearing the polymerizing microtubules, creating more ends for assembly, indicating that the slow rate of polymer formation is due to a slow rate of self-initiation. If spindle tubulin is polymerized at 37 degrees C and then lowered to 15 degrees C, some polymer will be retained, the percentage of which depends on the protein concentration. These results demonstrate that spindle tubulin from S. purpuratus will assemble at 37 degrees C with a low critical concentration for polymerization in the absence of detectable MAPs and will self-assemble and maintain steady state levels of polymer at physiological temperatures.  相似文献   

12.
E J Aamodt  R C Williams 《Biochemistry》1984,23(25):6023-6031
Neuronal intermediate filaments (neurofilaments) prepared from brain form a viscous sedimentable complex with microtubules under suitable conditions [Runge, M.S., Laue, T.M., Yphantis, D.A., Lifsics, M.R., Saito, A., Altin, M., Reinke, K., & Williams, R.C., Jr. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 1431-1435]. Under the same conditions, neurofilaments prepared from spinal cord did not form such a complex. Brain neurofilaments were shown to differ from spinal cord neurofilaments in part by having proteins that resemble microtubule-associated proteins (MAPs) attached to them. MAPs became bound to spinal cord neurofilaments when the two structures were incubated together. The resulting MAP-decorated neurofilaments formed a viscous complex with microtubules, showing that some component of the MAPs mediated the association between the two filamentous organelles. By means of gel filtration, the MAPs were separated into two major fractions. The large Stokes radius fraction was active in producing neurofilament-microtubule mixtures of high viscosity, while the small Stokes radius fraction was not. The dependence of the viscosity of neurofilament-microtubule mixtures upon the concentration of MAPs was found to possess a maximum. This result suggests that the MAPs serve as cross-bridges between the two structures. Neurofilaments, with and without bound MAPs, were allowed to adhere to electron microscope grids. The grids were then exposed to microtubules, fixed, and stained. The grids prepared with MAP-decorated neurofilaments bound numerous microtubules, each in apparent contact with one or more neurofilaments. The grids prepared with untreated neurofilaments lacked microtubules. These results show that one or more of the MAPs mediates association between microtubules and neurofilaments.  相似文献   

13.
E Hamel  C M Lin 《Biochemistry》1984,23(18):4173-4184
A new method for separating microtubule-associated proteins (MAPs) and tubulin, appropriate for relatively large-scale preparations, was developed. Most of the active tubulin was separated from the MAPs by centrifugation after selective polymerization of the tubulin was induced with 1.6 M 2-(N-morpholino)ethanesulfonate (Mes) and GTP. The MAPs-enriched supernatant was concentrated and subsequently clarified by prolonged centrifugation. The supernatant (total soluble MAPs) contained almost no tubulin, most of the nucleosidediphosphate kinase activity of the microtubule protein, good activity in promoting microtubule assembly in 0.1 M Mes, and proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The pellet, inactive in supporting microtubule assembly, contained denatured tubulin, most of the ATPase activity of the microtubule protein, and significant amounts of protein with the electrophoretic mobility of MAP-2. Insoluble material at this and all previous stages, including the preparation of the microtubule protein, could be heat extracted to yield soluble protein active in promoting microtubule assembly and containing MAP-2 as a major constituent. The total soluble MAPs were further purified by DEAE-cellulose chromatography into bound and unbound components, both of which induced microtubule assembly. The bound component (DEAE-MAPs) contained proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The polymerization reaction induced by the unbound component (flow-through MAPs) produced very high turbidity readings. This was caused by the formation of bundles of microtubules. Although the flow-through MAPs contained significantly more ATPase, tubulin-independent GTPase, and, especially, nucleosidediphosphate kinase activity than the DEAE-MAPs, preparation of a MAPs fraction without these enzymes required heat treatment.  相似文献   

14.
Assembly properties of tubulin after carboxyl group modification   总被引:3,自引:0,他引:3  
By chemically modifying carboxyl groups we have investigated the role of the highly acidic COOH-terminal domains of alpha- and beta-tubulin in regulating microtubule assembly. Using a carbodiimide-promoted amidation reaction, as many as 25 carboxyl groups were modified by the addition of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and an amine nucleophile, [14C] glycine ethyl ester or [3H]methylamine, to assembled microtubules. Modification occurred primarily in the carboxyl-terminal region as demonstrated by limited proteolysis of modified tubulin by trypsin, chymotrypsin, subtilisin, and carboxypeptidase Y. Modified tubulin polymerized into microtubules with a critical concentration that was 15% of that for unmodified tubulin. Assembly of modified tubulin and microtubules formed from modified tubulin were less sensitive to Ca2+ and high ionic strength. Ca2+ binding studies under low ionic strength conditions indicated that modified tubulin does not contain the high affinity Ca2+ binding site. While assembly of unmodified tubulin was stimulated by Mg2+ up to 10 mM, assembly of the modified protein was inhibited by concentrations greater than 1 mM. When 24 residues were modified, polymerization was no longer stimulated by microtubule-associated proteins (MAPs) or polylysine and incorporation of high molecular weight MAPs into the polymers was reduced by about 70% compared to unmodified tubulin. These studies demonstrate that chemical modification of carboxyl groups in tubulin, most of which are localized in the COOH-terminal region, leads to an enhanced ability to polymerize and a decrease in interaction with MAPs and other positively charged species.  相似文献   

15.
Assembly of brain microtubule proteins isolated from the Atlantic cod, Gadus morhua, was found to be much less sensitive to colchicine than assembly of bovine brain microtubules, which was completely inhibited by low colchicine concentrations (10 microM). The degree of disassembly by colchicine was also less for cod microtubules. The lack of colchicine effect was not caused by a lower affinity of colchicine to cod tubulin, as colchicine bound to cod tubulin with a dissociation constant, Kd, and a binding ratio close to that of bovine tubulin. Cod brain tubulin was highly acetylated and mainly detyrosinated, as opposed to bovine tubulin. When cod tubulin, purified by means of phosphocellulose chromatography, was assembled by addition of DMSO in the absence of microtubule-associated proteins (MAPs), the microtubules became sensitive to low concentrations of colchicine. They were, however, slightly more stable to disassembly, indicating that posttranslational modifications induce a somewhat increased stability to colchicine. The stability was mainly MAPs dependent, as it increased markedly in the presence of MAPs. The stability was not caused by an extremely large amount of cod MAPs, since there were slightly less MAPs in cod than in bovine microtubules. When "hybrid" microtubules were assembled from cod tubulin and bovine MAPs, these microtubules became less sensitive to colchicine. This was not a general effect of MAPs, since bovine MAPs did not induce a colchicine stability of microtubules assembled from bovine tubulin. We can therefore conclude that MAPs can induce colchicine stability of colchicine labile acetylated tubulin.  相似文献   

16.
Microtubule-associated proteins (MAPs) have been isolated from different development stages of Drosophila melanogaster and characterized by their association to tubulin, but not to tubulin lacking its 4-kD carboxy terminal region (S-tubulin), and by their ability to promote tubulin polymerization. Following these criteria some peptides of Mr 255, 205, and 180 kD were identified as MAPs. By means of immunological analogy we have identified a peptide related to mammalian brain MAP known as tau factor.  相似文献   

17.
Mao T  Jin L  Li H  Liu B  Yuan M 《Plant physiology》2005,138(2):654-662
The organization and dynamics of microtubules are regulated by microtubule-associated proteins, or MAPs. In Arabidopsis (Arabidopsis thaliana), nine genes encode proteins of the evolutionarily conserved MAP65 family. We proposed that different MAP65s might have distinct roles in the interaction with microtubules. In this study, two AtMAP65 proteins, AtMAP65-1 and AtMAP65-6, were chosen to test this hypothesis in vitro. Although both fusion proteins were able to cosediment with microtubules in vitro, different properties on tubulin polymerization and microtubule bundling were observed. AtMAP65-1 was able to promote tubulin polymerization, enhance microtubule nucleation, and decrease the critical concentration for tubulin polymerization. It also induced the formation of large microtubule bundles by forming cross-bridges between microtubules evenly along the whole length of microtubules. In the presence of AtMAP65-1, microtubule bundles were more resistant to cold and dilution treatments. AtMAP65-6, however, demonstrated no activity in promoting tubulin polymerization and stabilizing preformed microtubules. AtMAP65-6 induced microtubules to form a mesh-like network with individual microtubules. Cross-bridge-like interactions were only found at regional sites between microtubules. The microtubule network induced by AtMAP65-6 was more resistant to high concentration of NaCl than the bundles induced by AtMAP65-1. Purified monospecific anti-AtMAP65-6 antibodies revealed that AtMAP65-6 was associated with mitochondria in Arabidopsis cells. It was concluded that these two MAP65 proteins were targeted to distinct sites, thus performing distinct functions in Arabidopsis cells.  相似文献   

18.
A method is described for measuring the quantities of stable and dynamic microtubules in a population in vitro. The method exploits the tendency of dynamic microtubules to depolymerize rapidly after being sheared. Stable microtubules, such as those protected by microtubule-associated proteins (MAPs), are broken to a smaller size by shearing, but do not depolymerize into subunits. The usual difficulty with this procedure is that the tubulin released from the dynamic microtubules rapidly repolymerizes before the end point of depolymerization can be measured. This has been overcome by including a small quantity of tubulin-colchicine complex in the mixture to block the repolymerization. For a total of 24 microM tubulin in a polymerization mixture, 10 microM of the sample polymerized originally under the conditions used. When 1.05 microM tubulin-colchicine complex was added at the time of shearing, the dynamic microtubules depolymerized, but the tubulin was released was unable to repolymerize and a small fraction of stable microtubules that resisted shear-induced depolymerization could then be detected. When traces of MAPs (0.23-2.8% by mass) were included in the tubulin mixture, the fraction of stable microtubules increased from 5% in the absence of added MAPs to 41% in the presence of 2.8% MAPs. All the MAPs in the mixture were found in the stable fraction and this stable fraction forms early during microtubule assembly. Calculations on the extent of enrichment of MAPs in the stable fraction indicated that as little as 4% MAPs in a microtubule protected it from shear-induced disassembly. The results suggest that low levels of MAPs may distribute nonrandomly in the microtubule population.  相似文献   

19.
Assembly properties of cod, bovine, and rat brain microtubules were compared. Estramustine phosphate, heparin, poly-L-aspartic acid, as well as NaCl, inhibited the assembly and disassembled both bovine and rat microtubules by inhibition of the binding between tubulin and MAPs. The assembly of cod brain microtubules was in contrast only marginally affected by these agents, in spite of a release of the MAPs. The results suggest that cod tubulin has a high intrinsic ability to assemble. This was confirmed by studies on phosphocellulose-purified cod tubulin, since the critical concentration for assembly was independent of the presence or absence of MAPs. The results show therefore that cod brain tubulin has, in contrast to bovine and rat brain tubulins, a high propensity to assembly under conditions which normally require the presence of MAPs. Even if cod MAPs, which have an unusual protein composition, were not needed for the assembly of cod microtubules, they were able to induce assembly of bovine brain tubulin. Both cod and bovine MAPs bound to cod microtubules, and bovine MAP1 and MAP2 bound to, and substituted at least the 400 kDa cod protein. This suggests that the tubulin-binding sites and the assembly-stimulatory ability of MAPs are common properties of MAPs from different species, independent of the tubulin assembly propensity.  相似文献   

20.
Promotion of MAP/MAP interaction by taxol   总被引:3,自引:0,他引:3  
The effects of taxol on microtubule-associated proteins of high molecular weight (MAPs) were studied in vitro. After negative staining, microtubules reconstituted in the presence of taxol from preparations of partially purified tubulin and MAPs, besides being bundled, displayed prominent elongated or globular extensions without apparent regularity. These extensions, but not the tubulin polymer, were heavily decorated after immuno-gold-labeling using antibodies to MAP-1 and MAP-2. Microtubules reconsituted in the absence of taxol showed a much more regular, and apparently helical, arrangement of MAPs along their surfaces. The formation of polymeric structures was also observed when preparation of MAPs free of tubulin were incubated with taxol. In this case in addition to large network-type aggregates with little apparent substructure, more regular structures seemingly consisting of approximately 5-nm-thick filaments arrayed in parallel were observed. Taxol-induced MAP aggregation occurred rapidly and was directly proportional to the concentration of protein, as revealed by optical density measurements. It is concluded that taxol, aside from promoting the assembly of tubulin and stabilizing microtubules, promotes MAP/MAP interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号