首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, β or γ). PIP5KIβ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIβ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIβ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIβ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis.  相似文献   

2.
Receptor-mediated endocytosis via clathrin-coated vesicles has been extensively studied and, while many of the protein players have been identified, much remains unknown about the regulation of coat assembly and the mechanisms that drive vesicle formation [1]. Some components of the endocytic machinery interact with inositol polyphosphates and inositol lipids in vitro, implying a role for phosphatidylinositols in vivo [2] and [3]. Specifically, the adaptor protein complex AP2 binds phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), PtdIns(3)P, PtdIns(3,4,5)P3 and inositol phosphates. Phosphatidylinositol binding regulates AP2 self-assembly and the interactions of AP2 complexes with clathrin and with peptides containing endocytic motifs [4] and [5]. The GTPase dynamin contains a pleckstrin homology (PH) domain that binds PtdIns(4,5)P2 and PtdIns(3,4,5)P3 to regulate GTPase activity in vitro [6] and [7]. However, no direct evidence for the involvement of phosphatidylinositols in clathrin-mediated endocytosis exists to date. Using well-characterized PH domains as high affinity and high specificity probes in combination with a perforated cell assay that reconstitutes coated vesicle formation, we provide the first direct evidence that PtdIns(4,5)P2 is required for both early and late events in endocytic coated vesicle formation.  相似文献   

3.
Formation of the apical surface and lumen is a fundamental, yet poorly understood, step in epithelial organ development. We show that PTEN localizes to the apical plasma membrane during epithelial morphogenesis to mediate the enrichment of PtdIns(4,5)P2 at this domain during cyst development in three-dimensional culture. Ectopic PtdIns(4,5)P2 at the basolateral surface causes apical proteins to relocalize to the basolateral surface. Annexin 2 (Anx2) binds PtdIns(4,5)P2 and is recruited to the apical surface. Anx2 binds Cdc42, recruiting it to the apical surface. Cdc42 recruits aPKC to the apical surface. Loss of function of PTEN, Anx2, Cdc42, or aPKC prevents normal development of the apical surface and lumen. We conclude that the mechanism of PTEN, PtdIns(4,5)P2, Anx2, Cdc42, and aPKC controls apical plasma membrane and lumen formation.  相似文献   

4.
A variety of studies have implicated the lipid PtdIns(4,5)P2 in endocytic internalization, but how this lipid mediates its effects is not known. The AP180 N-terminal homology (ANTH) domain is a PtdIns(4,5)P2-binding module found in several proteins that participate in receptor-mediated endocytosis. One such protein is yeast Sla2p, a highly conserved actin-binding protein essential for actin organization and endocytic internalization. To better understand how PtdIns(4,5)P2 binding regulates actin-dependent endocytosis, we investigated the functions of Sla2p's ANTH domain. A liposome-binding assay revealed that Sla2p binds to PtdIns(4,5)P2 specifically through its ANTH domain and identified specific lysine residues required for this interaction. Mutants of Sla2p deficient in PtdIns(4,5)P2 binding showed significant defects in cell growth, actin organization, and endocytic internalization. These defects could be rescued by increasing PtdIns(4,5)P2 levels in vivo. Strikingly, mutant Sla2p defective in PtdIns(4,5)P2 binding localized with the endocytic machinery at the cell cortex, establishing that the ANTH-PtdIns(4,5)P2 interaction is not necessary for this association. In contrast, multicolor real-time fluorescence microscopy and particle-tracking analysis demonstrated that PtdIns(4,5)P2 binding is required during endocytic internalization. These results demonstrate that the interaction of Sla2p's ANTH domain with PtdIns(4,5)P2 plays a key role in regulation of the dynamics of actin-dependent endocytic internalization.  相似文献   

5.
Phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] of turkey erythrocytes were labelled by using either [32P]Pi or [3H]inositol. Although there was little basal release of inositol phosphates from membranes purified from labelled cells, in the presence of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) the rate of accumulation of inositol bis-, tris- and tetrakis-phosphate (InsP2, InsP3 and InsP4) was increased 20-50-fold. The enhanced rate of accumulation of 3H-labelled inositol phosphates was linear for up to 20 min; owing to decreases in 32P specific radioactivity of phosphoinositides during incubation of membranes with unlabelled ATP, the accumulation of 32P-labelled inositol phosphates was linear for only 5 min. In the absence of ATP and a nucleotide-regenerating system, no InsP4 was formed, and the overall inositol phosphate response to GTP[S] was decreased. Analyses of phosphoinositides during incubation with ATP indicated that interconversions of PtdIns to PtdIns4P and PtdIns4P to PtdIns(4,5)P2 occurred to maintain PtdIns(4,5)P2 concentrations; GTP[S]-induced inositol phosphate formation was accompanied by a corresponding decrease in 32P- and 3H-labelled PtdIns, PtdIns4P and PtdIns(4,5)P2. In the absence of ATP, only GTP[S]-induced decreases in PtdIns(4,5)P2 occurred. Since inositol monophosphate was not formed under any condition, PtdIns is not a substrate for the phospholipase C. The production of InsP2 was decreased markedly, but not blocked, under conditions where Ins(1,4,5)P3 5-phosphomonoesterase activity in the preparation was inhibited. Thus the predominant substrate of the GTP[S]-activated phospholipase C of turkey erythrocyte membranes is PtdIns(4,5)P2. Ins(1,4,5)P3 was the major product of this reaction; only a small amount of Ins(1:2-cyclic, 4,5)P3 was released. The effects of ATP on inositol phosphate formation apparently involve the contributions of two phenomena. First, the P2-receptor agonist 2-methylthioadenosine triphosphate (2MeSATP) greatly increased inositol phosphate formation and decreased [3H]PtdIns4P and [3H]PtdIns(4,5)P2 in the presence of a low (0.1 microM) concentration of GTP[S]. ATP over the concentration range 0-100 microM produced effects in the presence of 0.1 microM-GTP[S] essentially identical with those observed with 2MeSATP, suggesting that the effects of low concentrations of ATP are also explained by a stimulation of P2-receptors. Higher concentrations of ATP also increase inositol phosphate formation, apparently by supporting the synthesis of substrate phospholipids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
To understand the molecular basis of granule release from platelets, we examined the role of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) in alpha-granule secretion. Streptolysin O-permeabilized platelets synthesized PtdIns(4,5)P(2) when incubated in the presence of ATP. Incubation of streptolysin O-permeabilized platelets with phosphatidylinositol-specific phospholipase C reduced PtdIns(4,5)P(2) levels and resulted in a dose- and time-dependent inhibition of Ca(2+)-induced alpha-granule secretion. Exogenously added PtdIns(4,5)P(2) inhibited alpha-granule secretion, with 80% inhibition at 50 microm PtdIns(4,5)P(2). Nanomolar concentrations of wortmannin, 33.3 microm LY294002, and antibodies directed against PtdIns 3-kinase did not inhibit Ca(2+)-induced alpha-granule secretion, suggesting that PtdIns 3-kinase is not involved in alpha-granule secretion. However, micromolar concentrations of wortmannin inhibited both PtdIns(4,5)P(2) synthesis and alpha-granule secretion by approximately 50%. Antibodies directed against type II phosphatidylinositol-phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) also inhibited both PtdIns(4,5)P(2) synthesis and Ca(2+)-induced alpha-granule secretion by approximately 50%. These antibodies inhibited alpha-granule secretion only when added prior to ATP exposure and not when added following ATP exposure, prior to Ca(2+)-mediated triggering. The inhibitory effects of micromolar wortmannin and anti-type II phosphatidylinositol-phosphate kinase antibodies were additive. These results show that PtdIns(4,5)P(2) mediates platelet alpha-granule secretion and that PtdIns(4,5)P(2) synthesis required for Ca(2+)-induced alpha-granule secretion involves the type II phosphatidylinositol 5-phosphate 4-kinase-dependent pathway.  相似文献   

7.
Epsin and AP180/CALM are endocytotic accessory proteins that have been implicated in the formation of clathrin-coated pits. Both proteins have phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding domains in their N termini, but these domains are structurally and functionally different. To understand the basis of their distinct properties, we measured the PtdIns(4,5)P2-dependent membrane binding of the epsin N-terminal homology (ENTH) domain and the AP180 N-terminal homology (ANTH) domain by means of surface plasmon resonance and monolayer penetration techniques and also calculated the effect of PtdIns(4,5)P2 on the electrostatic potential of these domains. PtdIns(4,5)P2 enhances the electrostatic membrane association of both domains; however, PtdIns(4,5)P2 binding exerts distinct effects on their membrane dissociation. Specifically, PtdIns(4,5)P2 induces the membrane penetration of the N-terminal alpha-helix of the ENTH domain, which slows the membrane dissociation of the domain and triggers the membrane deformation. These results provide the biophysical explanation for the membrane bending activity of epsin and its ENTH domain.  相似文献   

8.
A phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-hydrolytic activity was found to be present in the human platelet membrane fraction, with 20% of the total activity of the homogenate. The membrane-associated phospholipase C activity was extracted with 1% deoxycholate (DOC). The DOC-extractable phospholipase C was partially purified approx. 126-fold to a specific activity of 0.58 mumol of PtdIns-(4,5)P2 cleaved/min per mg of protein, by Q-Sepharose, heparin-Sepharose and Ultrogel AcA-44 column chromatographies. This purified DOC-extractable phospholipase C had an Mr of approx. 110,000, as determined by Ultrogel AcA-44 gel filtration. The enzyme exhibits a maximal hydrolysis for PtdIns-(4,5)P2 at pH 6.5 in the presence of 0.1% DOC. The addition of 0.1% DOC caused a marked activation of both PtdIns(4,5)P2 and phosphatidylinositol (PtdIns) hydrolyses by the enzyme. The enzyme hydrolysed PtdIns(4,5)P2 and PtdIns in a different Ca2+-dependent manner; the maximal hydrolyses for PtdIns(4,5)P2 and PtdIns were obtained at 4 microM- and 0.5 mM-Ca2+ respectively. In the presence of 1 mM-Mg2+, PtdIns(4,5)P2-hydrolytic activity was decreased at all Ca2+ concentrations examined, but PtdIns-hydrolytic activity was not affected.  相似文献   

9.
We have investigated synthesis of 3-phosphorylated inositol lipids in growth factor-stimulated Swiss 3T3 cells. Those growth factors tested which act via tyrosine kinase-containing receptors (platelet-derived growth factor (PDGF), insulin growth factor I (IGF-I), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF)) caused the rapid synthesis of [32P]PtdIns(3,4)P2 and [32P]PtdIns(3,4,5)P3 (PtdIns is phosphatidylinositol) in [32P]P(i)-prelabeled cells and the appearance of an inositol lipid 3-OH kinase in antiphosphotyrosine immunoprecipates. In contrast, those growth factors tested which act via G-protein-coupled receptors (bombesin, vasopressin, prostaglandin E1) were unable to stimulate either of the above responses. Furthermore, while PDGF was able to increase the formation of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in streptolysin-permeabilized cells, guanosine 5'-3-(thio)triphosphate and guanyl-5'-yl imidodiphosphate were not. These results suggest that Swiss 3T3 cells possess the machinery for tyrosine kinase but not G-protein-mediated activation of PtdIns(4,5)P2 3-OH kinase; a situation which is the inverse to that recently described for human neutrophils. The tyrosine kinase-containing receptors differed markedly in their relative abilities to elevate the levels of [32P] PtdIns(3,4,5)P3 (ranked in the order PDGF greater than or equal to IGF-I greater than EGF greater than bFGF), [32P]Ptd-OH (PDGF greater than EGF greater than bFGF; undetectable for IGF-I), and [32P]PtdIns4P (EGF greater than bFGF greater than PDGF; undetectable for IGF-I) in [32P]P(i)-prelabeled cells. These differences are epitomized by IGF-I, which was the joint most powerful stimulus for [32P] PtdIns(3,4,5)P3 formation, but was unable to stimulate a measurable accumulation of [32P]Ptd-OH (and hence, by deduction, was unable to stimulate phospholipase C). These results indicate that there is a differential ability among the tyrosine kinase-containing receptors present in a single cell to recruit phospholipase C and PtdIns(4,5)P2 3-OH kinase into their signalling complexes and further emphasizes the notion that the rapid synthesis of PtdIns(3,4,5)P3 may be a signalling event.  相似文献   

10.
PtdIns(4,5)P(2) and PtdIns(4,5)P(2) 5-phosphatases play important roles in diverse aspects of cell metabolism, including protein trafficking. However, the relative importance of the PtdIns(4,5)P(2) 5-phosphatases in regulating PtdIns(4,5)P(2) levels for specific cell processes is not well understood. Ocrl1 is a PtdIns(4,5)P(2) 5-phosphatase that is deficient in the oculocerebrorenal syndrome of Lowe, a disorder characterized by defects in kidney and lens epithelial cells and mental retardation. Ocrl1 was originally localized to the Golgi in fibroblasts, but a subsequent report suggested a lysosomal localization in a kidney epithelial cell line. In this study we defined the localization of ocrl1 in fibroblasts and in two kidney epithelial cell lines by three methods: immunofluorescence, subcellular fractionation, and a dynamic perturbation assay with brefeldin A. We found that ocrl1 was a Golgi-localized protein in all three cell types and further identified it as a protein of the trans-Golgi network (TGN). The TGN is a major sorting site and has the specialized function in epithelial cells of directing proteins to the apical or basolateral domains. The epithelial cell phenotype in Lowe syndrome and the localization of ocrl1 to the TGN imply that this PtdIns(4,5)P(2) 5-phosphatase plays a role in trafficking. (J Histochem Cytochem 48:179-189, 2000)  相似文献   

11.
A major regulator of endocytosis and cortical F-actin is thought to be phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] present in plasma membranes. Here we report that in 3T3-L1 adipocytes, clathrin-coated membrane retrieval and dense concentrations of polymerized actin occur in restricted zones of high endocytic activity. Ultrafast-acquisition and superresolution deconvolution microscopy of cultured adipocytes expressing an enhanced green fluorescent protein- or enhanced cyan fluorescent protein (ECFP)-tagged phospholipase Cdelta1 (PLCdelta1) pleckstrin homology (PH) domain reveals that these zones spatially coincide with large-scale PtdIns(4,5)P2-rich plasma membrane patches (PRMPs). PRMPs exhibit lateral dimensions exceeding several micrometers, are relatively stationary, and display extensive local membrane folding that concentrates PtdIns(4,5)P2 in three-dimensional space. In addition, a higher concentration of PtdIns(4,5)P2 in the membranes of PRMPs than in other regions of the plasma membrane can be detected by quantitative fluorescence microscopy. Vesicular structures containing both clathrin heavy chains and PtdIns(4,5)P2 are revealed immediately beneath PRMPs, as is dense F actin. Blockade of PtdIns(4,5)P2 function in PRMPs by high expression of the ECFP-tagged PLCdelta1 PH domain inhibits transferrin endocytosis and reduces the abundance of cortical F-actin. Membrane ruffles induced by the expression of unconventional myosin 1c were also found to localize at PRMPs. These results are consistent with the hypothesis that PRMPs organize active PtdIns(4,5)P2 signaling zones in the adipocyte plasma membrane that in turn control regulators of endocytosis, actin dynamics, and membrane ruffling.  相似文献   

12.
A mechanism for regulating the strength of synaptic inhibition is enabled by altering the number of GABA(A) receptors available at the cell surface. Clathrin and adaptor protein 2 (AP2) complex-mediated endocytosis is known to play a fundamental role in regulating cell surface GABA(A) receptor numbers. Very recently, we have elucidated that phospholipase C-related catalytically inactive protein (PRIP) molecules are involved in the phosphorylation-dependent regulation of the internalization of GABA(A) receptors through association with receptor beta subunits and protein phosphatases. In this study, we examined the implications of PRIP molecules in clathrin-mediated constitutive GABA(A) receptor endocytosis, independent of phospho-regulation. We performed a constitutive receptor internalization assay using human embryonic kidney 293 (HEK293) cells transiently expressed with GABA(A) receptor alpha/beta/gamma subunits and PRIP. PRIP was internalized together with GABA(A) receptors, and the process was inhibited by PRIP-binding peptide which blocks PRIP binding to beta subunits. The clathrin heavy chain, mu2 and beta2 subunits of AP2 and PRIP-1, were complexed with GABA(A) receptor in brain extract as analyzed by co-immunoprecipitation assay using anti-PRIP-1 and anti-beta2/3 GABA(A) receptor antibody or by pull-down assay using beta subunits of GABA(A) receptor. These results indicate that PRIP is primarily implicated in the constitutive internalization of GABA(A) receptor that requires clathrin and AP2 protein complex.  相似文献   

13.
The metabolism of phosphatidylinositol (PtdIns) was studied in a mink lung epithelial cell line and its subclones transformed by feline sarcoma viruses containing either the v-fms or v-fes oncogenes. The transformed cell lines had a higher rate of PtdIns turnover but did not have elevated levels of phosphorylated PtdIns species or PtdIns kinase activity. Significantly higher specific activities of a guanine nucleotide-activated PtdIns-4,5-diphosphate phospholipase C were detected in both transformed cell lines (F3CL7(v-fes), 55 pmol/min/mg of protein and G2M(v-fms), 18 pmol/min/mg of protein) as compared to the nontransformed parental cell line (CCL64, 2 pmol/min/mg of protein). The guanine nucleotide-stimulated phospholipase C activity was specific for PtdIns-4,5-diphosphate, and the water-soluble hydrolysis product was inositol 1,4,5-triphosphate. Both GTP and nonhydrolyzable GTP analogs activated the phospholipase C, whereas ATP was weakly effective and GDP was inactive. The phospholipase C activity was maximally active in the presence of 9 mM sodium cholate, had a sharp pH optimum of pH 6.5, and was not activated by calcium although hydrolysis was inhibited by high concentrations of EDTA. These data point to enhanced production of diacylglycerol and inositol 1,4,5-triphosphate second messengers in transformed cells due to the activation of guanine nucleotide-dependent PtdIns-4,5-diphosphate-specific phospholipase C and suggest that the generation of aberrant hormonally independent signals is associated with cell transformation by oncogenes encoding tyrosine-specific protein kinases.  相似文献   

14.
Phosphoinositides (PI) are synthesized and turned over by specific kinases, phosphatases, and lipases that ensure the proper localization of discrete PI isoforms at distinct membranes. We analyzed the role of the yeast synaptojanin-like proteins using a strain that expressed only a temperature-conditional allele of SJL2. Our analysis demonstrated that inactivation of the yeast synaptojanins leads to increased cellular levels of phosphatidylinositol (3,5)-bisphosphate and phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P(2)), accompanied by defects in actin organization, endocytosis, and clathrin-mediated sorting between the Golgi and endosomes. The phenotypes observed in synaptojanin-deficient cells correlated with accumulation of PtdIns(4,5)P(2), because these effects were rescued by mutations in MSS4 or a mutant form of Sjl2p that harbors only PI 5-phosphatase activity. We utilized green fluorescent protein-pleckstrin homology domain chimeras (termed FLAREs for fluorescent lipid-associated reporters) with distinct PI-binding specificities to visualize pools of PtdIns(4,5)P(2) and phosphatidylinositol 4-phosphate in yeast. PtdIns(4,5)P(2) localized to the plasma membrane in a manner dependent on Mss4p activity. On inactivation of the yeast synaptojanins, PtdIns(4,5)P(2) accumulated in intracellular compartments, as well as the cell surface. In contrast, phosphatidylinositol 4-phosphate generated by Pik1p localized in intracellular compartments. Taken together, our results demonstrate that the yeast synaptojanins control the localization of PtdIns(4,5)P(2) in vivo and provide further evidence for the compartmentalization of different PI species.  相似文献   

15.
The alpha,beta2,mu2,sigma2 heterotetrameric AP2 complex is recruited exclusively to the phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P(2))-rich plasma membrane where, amongst other roles, it selects motif-containing cargo proteins for incorporation into clathrin-coated vesicles. Unphosphorylated and mu2Thr156-monophosphorylated AP2 mutated in their alphaPtdIns4,5P(2), mu2PtdIns4,5P(2), and mu2Yxxvarphi binding sites were produced, and their interactions with membranes of different phospholipid and cargo composition were measured by surface plasmon resonance. We demonstrate that recognition of Yxxvarphi and acidic dileucine motifs is dependent on corecognition with PtdIns4,5P(2), explaining the selective recruitment of AP2 to the plasma membrane. The interaction of AP2 with PtdIns4,5P(2)/Yxxvarphi-containing membranes is two step: initial recruitment via the alphaPtdIns4,5P(2) site and then stabilization through the binding of mu2Yxxvarphi and mu2PtdIns4,5P(2) sites to their ligands. The second step is facilitated by a conformational change favored by mu2Thr156 phosphorylation. The binding of AP2 to acidic-dileucine motifs occurs at a different site from Yxxvarphi binding and is not enhanced by mu2Thr156 phosphorylation.  相似文献   

16.
Using several approaches, we investigated the importance of clathrin-mediated endocytosis in the uptake of human rhinovirus serotype 2 (HRV2). By means of confocal immunofluorescence microscopy, we show that K(+) depletion strongly reduces HRV2 internalization. Viral uptake was also substantially reduced by extraction of cholesterol from the plasma membrane with methyl-beta-cyclodextrin, which can inhibit clathrin-mediated endocytosis. In accordance with these data, overexpression of dynamin K44A in HeLa cells prevented HRV2 internalization, as judged by confocal immunofluorescence microscopy, and strongly reduced infection. We also demonstrate that HRV2 bound to the surface of HeLa cells is localized in coated pits but not in caveolae. Finally, transient overexpression of the specific dominant-negative inhibitors of clathrin-mediated endocytosis, the SH3 domain of amphiphysin and the C-terminal domain of AP180, potently inhibited internalization of HRV2. Taken together, these results indicate that HRV2 uses clathrin-mediated endocytosis to infect cells.  相似文献   

17.
Epsin was originally discovered by virtue of its binding to another accessory protein, Eps15. Members of the epsin family play an important role as accessory proteins in clathrin-mediated endocytosis. Epsin isoforms have been described that differ in intracellular site of action and/or in tissue distribution, although all epsins essentially contribute to membrane deformation. Besides inducing membrane curvature, epsin also plays a key function as adaptor protein, coupling various components of the clathrin-assisted uptake and fulfils an important role in selecting and recognizing cargo. Furthermore, epsin possesses the ability to block vesicle formation during mitosis. To perform all these functions, epsin, apart from interacting with PtdIns(4,5)P2 via its ENTH domain, also engages in several protein interactions with different components of the clathrin-mediated endocytic system. Recently, RNA interference has successfully been exploited to generate a cell line constitutively silencing epsin expression, which can be used to study internalization of multiple ligands.  相似文献   

18.
Although the actomyosin cytoskeleton has been implicated in clathrin-mediated endocytosis, a clear requirement for actomyosin in clathrin-independent endocytosis (CIE) has not been demonstrated. We discovered that the Rho-associated kinase ROCK2 is required for CIE of MHCI and CD59 through promotion of myosin II activity. Myosin IIA promoted internalization of MHCI and myosin IIB drove CD59 uptake in both HeLa and polarized Caco2 intestinal epithelial cells. In Caco2 cells, myosin IIA localized to the basal cortex and apical brush border and mediated MHCI internalization from the basolateral domain, while myosin IIB localized at the basal cortex and apical cell–cell junctions and promoted CD59 uptake from the apical membrane. Atomic force microscopy demonstrated that myosin IIB mediated apical epithelial tension in Caco2 cells. Thus, specific cargoes are internalized by ROCK2-mediated activation of myosin II isoforms to mediate spatial regulation of CIE, possibly by modulation of local cortical tension.  相似文献   

19.
Adaptors appear to control clathrin-coat assembly by determining the site of lattice polymerization but the nucleating events that target soluble adaptors to an appropriate membrane are poorly understood. Using an in vitro model system that allows AP-2-containing clathrin coats to assemble on lysosomes, we show that adaptor recruitment and coat initiation requires phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) synthesis. PtdIns(4,5)P2 is generated on lysosomes by the sequential action of a lysosome-associated type II phosphatidylinositol 4-kinase and a soluble type I phosphatidylinositol 4-phosphate 5-kinase. Phosphatidic acid, which potently stimulates type I phosphatidylinositol 4-phosphate 5-kinase activity, is generated on the bilayer by a phospholipase D1-like enzyme located on the lysosomal surface. Quenching phosphatidic acid function with primary alcohols prevents the synthesis of PtdIns(4, 5)P2 and blocks coat assembly. Generating phosphatidic acid directly on lysosomes with exogenous bacterial phospholipase D in the absence of ATP still drives adaptor recruitment and limited coat assembly, indicating that PtdIns(4,5)P2 functions, at least in part, to activate the PtdIns(4,5)P2-dependent phospholipase D1. These results provide the first direct evidence for the involvement of anionic phospholipids in clathrin-coat assembly on membranes and define the enzymes responsible for the production of these important lipid mediators.  相似文献   

20.
It is well known that phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) plays important roles not only as a precursor lipid for generating second messengers but also as a regulator of cytoskeletal re-organization. The last step of PtdIns(4,5)P2 synthesis is catalyzed by PtdIns monophosphate(PIP) kinase. So far, three type I PIP kinases(alpha, beta, and gamma), which phosphorylate PtdIns(4) to PtdIns(4,5)P2, and three type II PIP kinases(alpha, beta, gamma), which phosphorylate PtdIns(5)P to PtdIns(4,5)P2 have been found. On the other hand, several inositolpolyphosphate 5-phosphatases which convert PtdIns(4,5)P2 to PtdIns(4) are known. Among them, synaptojanin, which associates with tyrosine kinase receptors through an adaptor protein, Ash/Grb2, in response to growth factors, is capable of hydrolyzing PtdIns(4,5)P2 bound to actin regulatory proteins, resulting in actin filament re-organization downstream of tyrosine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号