首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comamonas testosteroni P15 and its mutant strain E23 can tolerate and utilize phenol as the sole source of carbon and energy at up to 15 mM and 20 mM, respectively. Compared to the wild type P15, mutant E23 showed higher values of K s and K i but a lower μmax value, and had lower phenol hydroxylase and catechol 2,3-dioxygenase activities. Without phenol exposure, mutant E23 demonstrated a two-fold greater amount of cardiolipin than the wild type P15. Upon exposure to phenol, an increase in cardiolipin at the expense of phosphatidylethanolamine was observed in the wild type P15. However, there was no significant difference in major phospholipid contents between mutant E23 cells grown in the presence or absence of phenol. It was noted that the ratio of trans/cis fatty acids of phosphatidylethanolamine and cardiolipin in mutant E23 was 65–70% higher than that in the wild type P15. In the absence of phenol, the degree of saturation of cardiolipin in mutant E23 was 33% higher than that in wild type P15. In contrast to earlier findings, an increase in C16:1 9trans with a simultaneous decrease in C18:1 11cis instead of C16:1 9cis was observed in specific classes of phospholipids. Received: 30 July 1998 / Received last revision: 16 November 1998 / Accepted: 12 December 1998  相似文献   

2.
Alfonso M  Collados R  Yruela I  Picorel R 《Planta》2004,219(3):428-439
Photoinhibition and recovery were studied in two photosynthetic cell suspensions from soybean (Glycine max L. Merr): the wild type (WT) and the herbicide-resistant D1 mutant STR7. This mutant also showed an increase in saturated fatty acids from thylakoid lipids. STR7 was more sensitive to photoinhibition under culture conditions. In vivo photoinhibition experiments in the presence of chloramphenicol, in vitro studies in isolated thylakoid membranes, and immunoblot analysis indicated that the process of light-induced degradation of the D1 protein was not involved in the response of STR7 to light. At growth temperature (24°C), the recovery rate of photoinhibited photosystem II (PSII) was slower in STR7 relative to WT. Photoinhibition and recovery were differentially affected by temperature in both cell lines. The rates of photoinhibition were faster in STR7 at any temperature below 27°C. The rates of PSII recovery from STR7 were more severely affected than those of WT at temperatures lower than 24°C. The photoinhibition and recovery rates of WT at 17°C mimicked those of STR7 at 24°C. In organelle translation studies indicated that synthesis and elongation of D1 were substantially similar in both cell lines. However, sucrose gradient fractionation of chloroplast membranes demonstrated that D1 and also other PSII proteins such as D2, OEE33, and LCHII had a reduced capability to incorporate into PSII to yield a mature assembled complex in STR7. This effect may become the rate-limiting step during the recovery of photoinhibited PSII and may explain the increased sensitivity to high light found in STR7. Our data may hint at a possible role of fatty acids from membrane lipids in the assembly and dynamics of PSII.Abbreviations DCBQ 2,6-Dichloro p-benzoquinone - DM Dodecyl--d-maltoside - DTT Dithiothreitol - HL High light - LHCII Light-harvesting complex II - LL Low light - OEE Oxygen-evolving extrinsic proteins - PAGE Polyacrylamide gel electrophoresis - PG Phosphatidylglycerol - PSII Photosystem II - QA and QB Secondary quinone electron acceptors from PSII - RC Reaction center - SDS Sodium dodecyl sulfate - WT Wild type  相似文献   

3.
A mutant of Arabidopsis thaliana, deficient in the activity of a chloroplast ω9 fatty acid desaturase, accumulates high amounts of palmitic acid (16:0), and exhibits an overall reduction in the level of unsaturation of chloroplast lipids. Under standard conditions the altered membrane lipid composition had only minor effects on growth rate of the mutant, net photosynthetic CO2 fixation, photosynthetic electron transport, or chloroplast ultrastructure. Similarly, fluorescence polarization measurements indicated that the fluidity of the membranes was not significantly different in the mutant and the wild type. However, at temperatures above 28°C, the mutant grew more rapidly than the wild type suggesting that the altered fatty acid composition enhanced the thermal tolerance of the mutant. Similarly, the chloroplast membranes of the mutant were more resistant than wild type to thermal inactivation of photosynthetic electron transport. These observations lend support to previous suggestions that chloroplast membrane lipid composition may be an important component of the thermal acclimation response observed in many plant species which are photosynthetically active during periods of seasonally variable temperature extremes.  相似文献   

4.
G. Vogg  R. Heim  B. Gotschy  E. Beck  J. Hansen 《Planta》1998,204(2):201-206
The fluidity of chloroplast thylakoid membranes of frost-tolerant and frost-sensitive needles of␣three- to four-year-old Scots pine (Pinus sylvestris L.) trees, of liposomes produced from the lipids of the thylakoids of these needles, and of liposomes containing varying amounts of light-harvesting complex (LHC) II protein was investigated by means of electron paramagnetic resonance (EPR) measurements using spin-labelled fatty acids as probes. Broadening of the EPR-resonance signals of 16-doxyl stearic acid in chloroplast membranes of frost-sensitive needles and changes in the amplitudes of the peaks were observed upon a decrease in temperature from +30 °C to −10 °C, indicating a drastic loss in rotational mobility. The lipid molecules of the thylakoid membranes of frost-tolerant needles exhibited greater mobility. Moderate frost resistance could be induced in Scots pine needles by short-day treatment (Vogg et al., 1997, Planta, this issue), and growth of the trees under short-day illumination (9 h) resulted in a higher mobility of the chloroplast membrane lipids than did growth under long-day conditions (16 h). The EPR spectrum of thylakoids from frost-tolerant needles at −10 °C was typical of a spin label in highly fluid surroundings. However, an additional peak in the low-field range appeared in the subzero temperature range for the chloroplast membranes of frost-sensitive needles, which represents spin-label molecules in a motionally restricted surrounding. The EPR spectra of thylakoids and of liposomes of thylakoid lipids from frost-hardy needles were identical at +30 °C and −10 °C. The corresponding spectra from frost-sensitive plants revealed an additional peak for the thylakoids, but not for the pure liposomes. Hence, the domains with restricted mobility could be attributed to protein-lipid interactions in the membranes. Broadening of the spectrum and the appearance of an additional peak was observed with liposomes of pure distearoyl phosphatidyl glycerol modified to contain increasing amounts of LHC II. These results are discussed with respect to a loss of chlorophyll and chlorophyll-binding proteins in thylakoids of Scots pine needles under winter conditions. Received: 3 March 1997 / Accepted: 16 July 1997  相似文献   

5.
Effects of the desA gene from the cyanobacterium Synechocystis sp. encoding Δ12 acyl-lipid desaturase and increasing the level of unsaturated fatty acids (linoleic acid (18:2) primarily) in membrane lipids, which was inserted into potato (Solanum tuberosum L., cv. Desnitsa) plants, on chloroplast ultrastructure and plant tolerance to low temperatures were studied. The main attention was focused on modifications in the chloroplast structure and their possible relation to potato plant tolerance to oxidative and low-temperature stresses under the influence to their transformation with the Δ12 acyl-lipid desaturase gene from cyanobacterium (desA-licBM3-plants). Morphometric analysis showed that, in comparison with wild-type (WT) plants, in desA-licBM3-plants the number of grana in chloroplasts increased substantially. The total number of thylakoids in transformant chloroplasts was almost twice higher than in WT plants. The number of plastoglobules per chloroplast of transformed plants increased by 25%. A marked increase in the number of grana, total number of thylakoids, and the number of plastoglobules in chloroplasts of desA-licBM3-plants indicates their more intense lipid metabolism, as compared with WT plants, and this resulted in the conservation of some part of lipids in plastoglobules. In addition, the expression of heterological desA gene encoding Δ12 acyl-lipid desaturase positively influenced stabilization of not only structure but also functioning of chloroplast membranes, thus preventing a transfer of electrons from the ETR to oxygen and subsequent ROS generation at hypothermia. This was confirmed by the analysis of the rate of superoxide anion generation in tested genotypes.  相似文献   

6.
The oleaginous microalga Lobosphaera incisa (Trebouxiophyceae, Chlorophyta) contains arachidonic acid (ARA, 20:4 n  6) in all membrane glycerolipids and in the storage lipid triacylglycerol. The optimal growth temperature of the wild-type (WT) strain is 25 °C; chilling temperatures (≤ 15 °C) slow its growth. This effect is more pronounced in the delta-5-desaturase ARA-deficient mutant P127, in which ARA is replaced with dihomo-γ-linolenic acid (DGLA, 20:3 n  6). In nutrient-replete cells grown at 25 °C, the major chloroplast lipid monogalactosylglycerol (MGDG) was dominated by C18/C16 species in both strains. Yet ARA constituted over 10% of the total fatty acids in the WT MGDG as a component of C20/C18 and C20/C20 species, whereas DGLA was only a minor component of MGDG in P127. Both strains increased the percentage of 18:3 n  3 in membrane lipids under chilling temperatures. The temperature downshift led to a dramatic increase in triacylglycerol at the expense of chloroplast lipids. WT and P127 showed a similarly high photochemical quantum yield of photosystem II, whereas non-photochemical quenching (NPQ) and violaxanthin de-epoxidation were drastically higher in P127, especially at 15 °C. Fluorescence anisotropy measurements indicated that ARA-containing MGDG might contribute to sustaining chloroplast membrane fluidity upon dropping to the chilling temperature. We hypothesize that conformational changes in chloroplast membranes and increased rigidity of the ARA-deficient MGDG of P127 at chilling temperatures are not compensated by trienoic fatty acids. This might ‘lock’ violaxanthin de-epoxidase in the activated state causing high constitutive NPQ and alleviate the risk of photodamage under chilling conditions in the mutant.  相似文献   

7.
We describe the cDNA sequence for ARG7, the gene that encodes argininosuccinate lyase – a selectable nuclear marker – in Chlamydomonas reinhardtii. The 5′ end of the cDNA contains one more exon and the organisation of the mRNA is different from that predicted from the genomic sequence. When expressed under the control of the endogenous RbcS2 promoter, the 2.22-kb cDNA complements the arg7 mutation as well as the genomic DNA. A linear cDNA fragment lacking promoter sequences is also able to complement, suggesting that it could be used in promoter-trapping experiments. Despite the presence of a sequence encoding a potential chloroplast transit peptide in the cDNA the protein is not targeted to the chloroplast, nor can it complement the arg7 mutation when expressed there. By inserting a T7 bacteriophage promoter into the plasmid, a version of the cDNA which is able to complement both the C. reinhardtii arg7 mutant and the Escherichia coli argH mutant has been created. This modified Arg7 cDNA provides two advantages over the genomic DNA currently in use for gene tagging: it is shorter (6.2 kb versus 11.9 kb for pARG7.8φ3), and the selectable marker used in C. reinhardtii is the same as that used in E. coli, making plasmid rescue of the tag much more likely to succeed. Received: 2 June 1998 / Accepted: 25 September 1998  相似文献   

8.
 Sunflower genotypes with increased levels of palmitic acid (C16 : 0) in the seed oil could be useful for food and industrial applications. The objective of the present study was to determine the inheritance of the high C16 : 0 content in the sunflower mutant line CAS-5 (>25% of the total oil fatty acids). This mutant was reciprocally crossed with the lines HA-89 (5.7% C16 : 0) and BSD-2-691 (5.4% C16 : 0), the latter being the parental line from which CAS-5 was isolated. No maternal effect for the C16 : 0 content was observed from the analysis of F1 seeds in any of the crosses. The inheritance study of the C16 : 0 content in F1, F2 and BC1F1 seeds from the crosses of CAS-5 with its parental line BSD-2-691 indicated that the segregation fitted a model of two alleles at one locus with partial dominance for the low content. The analysis of the fatty acid composition in the F2 populations from the crosses with HA-89 revealed a segregation fitting a ratio 19 : 38 : 7 for low (<7.5%), middle (7.5–15%), and high (>25%) C16 : 0 content, respectively. This segregation was explained on the basis of three loci (P1, P2, P3) each having two alleles showing partial dominance for low content. The genotypes with a high C16 : 0 content were homozygous for the recessive allele p1 and for at least one of the other two recessive alleles, p2 or p3. This model was further confirmed with the analysis of the F3 and the BC1F1 generations. It was concluded that both the recessive alleles p2 and p3 were already present in the BSD-2-691 line, the allele p1 being the result of a mutation from P1. This genetic study will facilitate breeding strategies associated with the incorporation of the high C16 : 0 trait into agronomically acceptable sunflower hybrids. Received: 30 March 1998 / Accepted: 13 August 1998  相似文献   

9.
Membrane fluidity change has long been suggested as the primary mechanism by which, plants adapt to cold stress, but the underlying molecular mechanisms are not completely established. In this study, we found that a knockout of acyl‐lipid/CoA desaturase 1 gene (ADS1; EC 1.14.99) enhances freezing tolerance after cold acclimation (CA). Fatty acid composition analysis demonstrated that 18:1 content in ads1 mutant plants was 20% lower than in wild‐type (WT) grown at 23°C. Lipidomics revealed that 34C‐species of monogalactosyl diacylglycerol (MGDG) content in ads1 mutants were 3.3–14.9% lower than in WT. Lipid positional analysis identified 10% lower 18:1 fatty acid content at the sn‐2 position of MGDG. The cytosolic calcium content in ads1 mutant plants was also approximately two‐times higher than that of WT in response to cold shock. Each of these biochemical differences between WT and ads1 mutant disappeared after CA. Subcellular localization of C‐ and N‐terminal enhanced‐fluorescence‐fusion proteins indicated that ADS1 localized exclusively to chloroplasts. These observations suggest that ADS1‐mediated alteration of chloroplast membrane fluidity is required to prime a CA response, and is the upstream event of cytosolic calcium signaling.  相似文献   

10.
Among amphibians, the ability to compensate for the effects of temperature on the locomotor system by thermal acclimation has only been reported in larvae of a single species of anuran. All other analyses have examined predominantly terrestrial adult life stages of amphibians and found no evidence of thermal acclimatory capacity. We examined the ability of both tadpoles and adults of the fully aquatic amphibian Xenopus laevis to acclimate their locomotor system to different temperatures. Tadpoles were acclimated to either 12 °C or 30 °C for 4 weeks and their burst swimming performance was assessed at four temperatures between 5 °C and 30 °C. Adult X. laevis were acclimated to either 10 °C or 25 °C for 6 weeks and their burst swimming performance and isolated muscle performance was determined at six temperatures between 5 °C and 30 °C. Maximum swimming performance of cold-acclimated X. laevis tadpoles was greater at cool temperatures and lower at the highest temperature in comparison with the warm-acclimated animals. At the test temperature of 12 °C, maximum swimming velocity of tadpoles acclimated to 12 °C was 38% higher than the 30 °C-acclimation group, while at 30 °C, maximum swimming velocity of the 30 °C-acclimation group was 41% faster than the 12 °C-acclimation group. Maximum swimming performance of adult X. laevis acclimated to 10 °C was also higher at the lower temperatures than the 25 °C acclimated animals, but there was no difference between the treatment groups at higher temperatures. When tested at 10 °C, maximum swimming velocity of the 10 °C-acclimation group was 67% faster than the 25 °C group. Isolated gastrocnemius muscle fibres from adult X. laevis acclimated to 10 °C produced higher relative tetanic tensions and decreased relaxation times at 10 °C in comparison with animals acclimated to 25 °C. This is only the second species of amphibian, and the first adult life stage, reported to have the capacity to thermally acclimate locomotor performance. Accepted: 28 October 1999  相似文献   

11.
 Artificial cold adaptation of a mesophilic protease, subtilisin BPN′, was attempted by means of random mutagenesis of its entire gene coupled with screening of cleared-zone-forming colonies on skim-milk plates at a low temperature. Out of sixty clones screened at 10 °C, one mutant enzyme (termed M-15) was found to acquire higher proteolytic activities, specifically dependent on low temperatures ranging from 10 °C to 1 °C, in comparison with those of the wild-type. DNA sequencing analysis revealed that, by this mutation, the 84th amino acid residue, valine, was substituted by isoleucine, which is located 1.5 nm from the center of the catalytic triad in the tertiary structure of subtilisin. By kinetic analysis of the purified enzyme samples, the higher proteolytic activities of M-15 at low temperatures were found to be due to the decrease in the K m value. There was no difference in thermostability between the wild-type and mutant enzymes, when tested by heat treatment. Circular dichroism spectra also showed no difference between them at 10 °C, indicating that the mutation of V84I had no effect on the secondary structure of subtilisin. Received: 22 April 1996 / Received last revision: 29 July 1996 / Accepted: 24 August 1996  相似文献   

12.
A Saccharomyces-cerevisiae-based simultaneous saccharification and fermentation (SSF) of lignocellulosic biomass is limited to an operating temperature of about 37 °C, and even a small increase in temperature can have a deleterious effect. This points to a need for a more thermotolerant yeast. To this end, S. cerevisiae D5A and a thermotolerant yeast, Candida acidothermophilum, were tested at 37 °C, 40 °C, and 42 °C using dilute-acid-pretreated poplar as substrate. At 40 °C, C. acidothermophilum produced 80% of the theoretical ethanol yield, which was higher than the yield from S.cerevisiae D5A at either 37 °C or 40 °C. At 42 °C, C. acidothermophilum showed a slight drop in performance. On the basis of preliminary estimates, SSF with C. acidothermophilum at 40 °C can reduce cellulase costs by about 16%. Proportionately greater savings can be realized at higher temperatures if such a high-temperature SSF is feasible. This demonstrates the advantage of using thermophilic or thermotolerant yeasts. Received: 20 February 1997 / Received revision: 24 June 1997 / Accepted: 4 July 1997  相似文献   

13.
This study employs closed-circuit respirometry to evaluate the effect of declining ambient oxygen partial pressure (PO2) and temperature on mass specific rates of oxygen uptake (O2) in Nautilus pompilius. At all temperatures investigated (11, 16, and 21 °C), O2 is relatively constant at high PO2 (oxyregulation) but declines sharply at low PO2 (oxyconformation). The critical PO2 below which oxyconformation begins (P c) is temperature dependent, higher at 21 °C (49 mmHg) than at 11 °C or 16 °C (21.7 mmHg and 30.8 mmHg respectively). In resting, post-absorptive animals, steady-state resting O2 increases significantly with temperature resulting in a Q10 value of approximately 2.5. The metabolic strategy of N. pompilius appears well suited to its lifestyle, providing sufficient metabolic scope for its extensive daily vertical migrations, but allowing for metabolic suppression when PO2 falls too low. The combination of low temperatures and low PO2 may suppress metabolic rate 16-fold (assuming negligible contributions from anaerobic metabolism and internal O2 stores), enhancing hypoxia tolerance. Accepted: 20 January 2000  相似文献   

14.
Cytokinins induce two specific morphological alterations in mosses: (i) the differentiation of a tip-growing cell into a three-faced apical cell (the so-called bud), and (ii) the division of chloroplasts. In a developmental mutant of the moss Physcomitrella patens (Hedw.) B.S.G. (mutant PC22) impeded in both cellular differentiation (bud production) and chloroplast division, addition of cytokinin (N62-isopentenyladenine) led to bud production after 3 d in the wild type and after 7 d in the mutant. Hormone induced a division of the mutant macrochloroplasts starting within 24 h and ongoing for 72 h. During this period the abundances of several plastid proteins changed in both genotypes as judged by two-dimensional-protein gel electrophoresis, silver staining and subsequent quantification with novel computer software. Eight of these polypeptides were isolated independently, subjected to microsequencing and thus identified, resulting in the first protein sequence data from a moss. Three polypeptides (24 kDa, 22 kDa, 20 kDa) were found to be homologous to enhancer protein OEE2 of the oxygen-evolving complex, four to represent isoforms of phosphoglycerate kinase (EC 2.7.2.3), and one was identified as the β-chain of chloroplast ATPase (EC 3.6.1.34). Possible involvement of these key enzymes of the chloroplast energy-conversion machinery in organelle division and in cellular differentiation is discussed. Further sequence information was obtained from both subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39). Amounts of these polypeptides were not appreciably affected by cytokinin in moss chloroplasts. Received: 4 July 1996 / Accepted: 4 October 1996  相似文献   

15.
The nature and importance of the DNA repair system in the chloroplasts of higher plants under oxidative stress or UV radiation‐induced genotoxicity was investigated via gain‐of‐functional approaches exploiting bacterial RecAs. For this purpose, transgenic tobacco (Nicotiana tabacum) plants and cell suspensions overexpressing Escherichia coli or Pseudomonas aeruginosa RecA fused to a chloroplast‐targeting transit peptide were first produced. The transgenic tobacco plants maintained higher amounts of chloroplast DNA compared with wild‐type (WT) upon treatments with methyl viologen (MV), a herbicide that generates reactive oxygen species (ROS) in chloroplasts. Consistent with these results, the transgenic tobacco leaves showed less bleaching than WT following MV exposure. Similarly, the MV‐treated transgenic Arabidopsis plants overexpressing the chloroplast RecA homologue RECA1 showed weak bleaching, while the recA1 mutant showed opposite results upon MV treatment. In addition, when exposed to UV‐C radiation, the dark‐grown E. coli RecA‐overexpressing transgenic tobacco cell suspensions, but not their WT counterparts, resumed growth and greening after the recovery period under light conditions. Measurements of UV radiation‐induced chloroplast DNA damage using DraI assays (Harlow et al. 1994) with the chloroplast rbcL DNA probe and quantitative PCR analyses showed that the transgenic cell suspensions better repaired their UV‐C radiation‐induced chloroplast DNA lesions compared with WT. Taken all together, it was concluded that RecA‐overexpressing transgenic plants are endowed with an increased chloroplast DNA maintenance capacity and enhanced repair activities, and consequently have a higher survival tolerance to genotoxic stresses. These observations are made possible by the functional compatibility of the bacterial RecAs in chloroplasts.  相似文献   

16.
Hydromedion sparsutum is a locally abundant herbivorous beetle on the sub-Antarctic island of South Georgia, often living in close association with the tussock grass Parodiochloa flabellata. Over a 4-day period in mid-summer when the air temperature varied from 0 to 20°C, the temperature in the leaf litter 5–10 cm deep at the base of tussock plants (the microhabitat of H. sparsutum) was consistently within the range of 5–7.5°C. Experiments were carried out to assess the ability of H. sparsutum larvae collected from this thermally stable environment to acclimate when maintained at lower (0°C) and higher (15°C) temperatures. The mean supercooling points (freezing temperature) of larvae collected in January and acclimated at 0°C for 3 and 6 weeks and 15°C for 3 weeks were all within the range of −2.6 to −4.6°C. Larvae in all treatment groups were freeze tolerant. Acclimation at 0°C significantly increased survival in a 15-min exposure at −8°C (from 27 to 96%) and −10°C (from 0 to 63%) compared with the field-fresh and 15°C-treated larvae. Similarly, survival of 0°C-acclimated larvae in a 72-h exposure at −6°C increased from 20 to 83%. Extending the acclimation period at 0°C to 6 weeks did not produce any further increase in cold tolerance. The concentrations of glucose and trehalose in larval body fluids increased significantly with low temperature acclimation. Larvae maintained at 15°C for 3 weeks (none survived for 6 weeks) were less able to survive 1-h exposures between 30 and 35°C than the 0°C-treated samples. Whilst vegetation and snow cover are an effective buffer against low winter temperatures in many polar insects, the inability of H. sparsutum larvae to acclimate or survive at 15°C suggests that protection against high summer temperatures is equally important for this species. Accepted: 2 August 1999  相似文献   

17.
Leaf tissue of a mutant of Arabidopsis thaliana contains reduced levels of both 16:3 and 18:3 fatty acids and has correspondingly increased levels of the 16:2 and 18:2 precursors due to a single recessive nuclear mutation. The kinetics of in vivo labeling of lipids with [14C]acetate and quantitative analysis of the fatty acid compositions of individual lipids suggests that reduced activity of a glycerolipid n-3 desaturase is responsible for the altered lipid composition of the mutant. The effects of the mutation are most pronounced when plants are grown at temperatures above 26°C but are relatively minor below 18°C, suggesting a temperature-sensitive enzyme. Since the desaturation of both 16- and 18-carbon fatty acids is altered, it appears that the affected enzyme lacks specificity with respect to acyl group chain length and that it is located in the chloroplast where 16:3-monogalactosyldiglyceride is synthesized. Because the degree of unsaturation of all the major glycerolipids was similarly affected by the mutation, it is inferred that either the affected desaturase does not exhibit head group specificity or there is substantial transfer of trienoic acyl groups between different lipid classes. Both chloroplast and extrachloroplast lipids are equally affected by the mutation. Thus, either the desaturase is located both outside and inside the chloroplast, or 18:3 formed inside the chloroplast is reexported to other cellular sites.  相似文献   

18.
The conduction properties of peripheral nerves from the Arctic fish species Arctic eelpouts (Lycodes sp.), snake blenny (Lumpenus lampretaeformis) and polar cod (Boreogadus saida), permanently adapted to low temperatures, were studied. Nerves of these fishes have two types of fibres, characterised by extracellular compound action potentials with fast (7 m/s) and slow (4 m/s) conduction velocities, as measured at 12 °C. The temperature dependence of the conduction velocity was bimodal, changing its slope at about 16 °C. The Q 10 above 16 °C was 1.12–1.49, while below 16 °C it was 1.82–2.16. Irreversible deterioration of the nerve was observed at temperatures around 19–27 °C. A comparison with data previously obtained from Mediterranean fishes indicates that Arctic fishes have similar temperature sensitivity of nerve conduction and a slight vertical displacement on the conduction velocity-temperature curves, which is insufficient to compensate the decrease of the conduction velocity at their physiological temperature, the conduction velocity of Arctic fishes being about one-half of that of temperate fishes. This suggests that this neurophysiological function is not fully cold-adapted in these Arctic fish species. Accepted: 3 June 2000  相似文献   

19.
To decrease activated sludge production, microbial cell lysis can be amplified to enhance cryptic growth (biomass growth on lysates). Cell breakage techniques (thermal, alkaline, acid) were studied to generate Alcaligenes eutrophus and sludge lysates and to evaluate their biodegradability. Gentle treatment conditions produced the best results. Complete cell deactivation was obtained for temperatures higher than 55 °C. The release kinetics were similar for temperatures varying from 60 °C to 100 °C. A 20-min incubation was suitable for reaching 80% of the maximum releasable carbon. In thermal-chemical hydrolysis, NaOH was the most efficient for inducing cell lysis. Carbon release was a two-step process. First an immediate release occurred, which was of the same order of magnitude for A. eutrophus and sludge [100–200 mg dissolved organic C (DOC) g total suspended solids (TSS)−1], followed by a post-treatment release. The second step was virtually equivalent to the first for sludge, and weaker for A. eutrophus (<50 mg DOC g TSS−1). The biodegradability of the soluble fraction, both the immediate and the post-treatment carbon release, was investigated. The optimal degradation yield, obtained with sludge cells, reached 55% after 48 h of incubation and 80% after 350 h. The most consistent lysis and biodegradation results occurred at pH 10 and 60 °C after a 20-min incubation. Received: 30 October 1998 / Received revision: 16 February 1999 / Accepted: 20 February 1999  相似文献   

20.
The adaptive responses of the greening process of plants to temperature stress were studied in cucumber (Cucumis sativus L. cv. Poinsette) seedlings grown at ambient (25 °C), low (7 °C) and high (42 °C) temperatures. Plastids isolated from these seedlings were incubated at different temperatures and the net syntheses of various tetrapyrroles were monitored. In plastids isolated from control seedlings grown at 25 °C, the optimum temperature for synthesis of Mg-protoporphyrin IX monoester or protochlorophyllide was 35 °C. Temperature maxima for Mg-protoporphyrin IX monoester and protochlorophyllide syntheses were shifted to 30 °C in chill-stressed seedlings. The net synthesis of total tetrapyrroles was severely reduced in heat-stressed seedlings and the optimum temperature for Mg-protoporphyrin IX monoester or protochlorophyllide synthesis shifted slightly towards higher temperatures, i.e. a broader peak was observed. To further study the temperature acclimation of seedlings with respect to the greening process, tetrapyrrole biosynthesis was monitored at 25 °C after pre-heating the plastids (28–70 °C) isolated from control, chill- and heat-stressed seedlings. In comparison to 28 °C-pre-heated plastids the percent inhibition of protochlorophyllide synthesis in 40 °C-pre-heated plastids was higher than for the control (25 °C-grown) in chill-stressed seedlings and lower than for the control in heat-stressed seedlings. Maximum synthesis of total tetrapyrroles and protoporphyrin IX was observed when chloroplasts were heated at 50 °C, which was probably due to heat-induced activation of the enzymes involved in protoporphyrin IX synthesis. Prominent shoulders towards lower or higher temperatures were seen in chill-stressed or heat-stressed seedlings, respectively. The shift in optimum temperature for tetrapyrrole biosynthesis in chill- and heat-stressed seedlings was probably due to acclimation of membranes possibly undergoing desaturation or saturation of membrane lipids. Proteins synthesized in response to temperature-stress may also play an important role in conferring stress-tolerance in plants. Received: 8 October 1998 / Accepted: 19 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号