首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron may populate distinct hepatocellular iron pools that differentially regulate expression of proteins such as ferritin and transferrin receptor (TfR) through iron-regulatory mRNA-binding proteins (IRPs), and may additionally regulate uptake and accumulation of non-transferrin-bound iron (NTBI). We examined iron-regulatory protein (IRP) binding activity and ferritin/TfR expression in human hepatoma (HepG2) cells exposed to iron at different levels for different periods. Several iron-dependent RNA-binding activities were identified, but only IRP increased with beta-mercaptoethanol. With exposures between 0 and 20 microg/ml iron, decreases in IRP binding accompanied large changes in TfR and ferritin expression, while chelation of residual iron with deferoxamine (DFO) caused a large increase in IRP binding with little additional effect on TfR or ferritin expression. Cellular iron content increased beyond 4 days of exposure to iron at 20 microg/ml, when IRP binding, TfR, and ferritin had all reached stable levels. However, iron content of the cells plateaued by 7 days, or decreased with 24 h exposure to very high concentrations (>50 microg/ml) of iron. These results indicate that iron-replete HepG2 cells exhibit a narrow range of maximal responsiveness of the IRP-regulatory mechanism, whose functional response is blunted both by excessive iron exposure and by removal of iron from a chelatable pool. HepG2 cells are able to limit iron accumulation upon higher or prolonged exposure to NTBI, apparently independent of the IRP mechanism.  相似文献   

2.
One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.  相似文献   

3.
Increasing evidence supports a role of cellular iron in the initiation and development of atherosclerosis. We and others reported earlier that iron-laden macrophages are associated with LDL oxidation, angiogenesis, nitric oxide production and apoptosis in atherosclerotic processes. Here we have further studied perturbed iron metabolism in macrophages, their interaction with lipoproteins and the origin of iron accumulation in human atheroma. In both early and advanced human atheroma lesions, hemoglobin and ferritin accumulation correlated with the macrophage-rich areas. Iron uptake into macrophages, via transferrin receptors or scavenger receptor-mediated erythrophagocytosis, increased cellular iron and accelerated ferritin synthesis at both mRNA and protein levels. The binding activity of iron regulatory proteins was enhanced by desferrioxamine (DFO) and decreased by hemin and iron compounds. Iron-laden macrophages exocytosed both iron and ferritin into the culture medium. Exposure to oxidized low-density lipoprotein (oxLDL, >or=50 microg/mL) resulted in <20% apoptosis of iron-laden human macrophages, but cells remained impermeable after a 24 h period and an increased excretion of ferritin could be observed by immunostaining techniques. Exposure to high-density lipoprotein (HDL) significantly decreased ferritin excretion from these cells. We conclude: (i) erythrophagocytosis and hemoglobin catabolism by macrophages contribute to ferritin accumulation in human atherosclerotic lesions and; (ii) iron uptake into macrophages leads to increased synthesis and secretion of ferritin; (iii) oxidized LDL and HDL have different effects on these processes.  相似文献   

4.
Increasing evidence supports a role of cellular iron in the initiation and development of atherosclerosis. We and others reported earlier that iron-laden macrophages are associated with LDL oxidation, angiogenesis, nitric oxide production and apoptosis in atherosclerotic processes. Here we have further studied perturbed iron metabolism in macrophages, their interaction with lipoproteins and the origin of iron accumulation in human atheroma. In both early and advanced human atheroma lesions, hemoglobin and ferritin accumulation correlated with the macrophage-rich areas. Iron uptake into macrophages, via transferrin receptors or scavenger receptor-mediated erythrophagocytosis, increased cellular iron and accelerated ferritin synthesis at both mRNA and protein levels. The binding activity of iron regulatory proteins was enhanced by desferrioxamine (DFO) and decreased by hemin and iron compounds. Iron-laden macrophages exocytosed both iron and ferritin into the culture medium. Exposure to oxidized low-density lipoprotein (oxLDL, ≥50?μg/mL) resulted in <20% apoptosis of iron-laden human macrophages, but cells remained impermeable after a 24?h period and an increased excretion of ferritin could be observed by immunostaining techniques. Exposure to high-density lipoprotein (HDL) significantly decreased ferritin excretion from these cells. We conclude: (i) erythrophagocytosis and hemoglobin catabolism by macrophages contribute to ferritin accumulation in human atherosclerotic lesions and; (ii) iron uptake into macrophages leads to increased synthesis and secretion of ferritin; (iii) oxidized LDL and HDL have different effects on these processes.  相似文献   

5.
6.
The role of iron-dependent oxidative metabolism in protecting the oxidable substrates contained in mature adipocytes is still unclear. Because differentiation increases ferritin formation in several cell types, thereby leading to an accumulation of H-rich isoferritins, we investigated whether differentiation affects iron metabolism in 3T3-L1 pre-adipocytes. To this aim, we evaluated the expression of the genes coding for the H and L ferritin subunits and for cytoplasmic iron regulatory protein (IRP) during the differentiation of 3T3-L1 cells in adipocytes induced by the addition of isobutylmethylxanthine, insulin, and dexamethasone. Differentiation enhanced ferritin formation and caused overexpression of the H subunit, thus altering the H/L subunit ratio. Northern blot analysis showed increased levels of H subunit mRNA. A gel retardation assay of cytoplasmic extract from differentiated cells, using an iron-responsive element as a probe, revealed enhanced an RNA binding capacity of IRP1, which correlated with the increase of IRP1 mRNA. The observed correlation between differentiation and iron metabolism in adipocytes suggests that an accumulation of H-rich isoferritin may limit the toxicity of iron in adipose tissue, thus exerting an antioxidant function.  相似文献   

7.
Rat liver ferritin is an effective donor of iron to rat hepatocytes. Uptake of iron from ferritin by the cells is partially inhibited by including apotransferrin in the culture medium, but not by inclusion of diferric transferrin. This inhibition is dependent on the concentration of apotransferrin, with a 30% depression in iron incorporation in the cells detected at apotransferrin concentrations above 40 micrograms/ml. However, apotransferrin does not interfere with uptake of 125I-labeled ferritin, suggesting that apotransferrin decreases retention of iron taken up from ferritin by hepatocytes by sequestering a portion of released iron before it has entered the metabolic pathway of the cells. The iron chelators desferrioxamine (100 microM), citrate (10 mM) and diethylenetriaminepentaacetate (100 microM) reduce iron uptake by the cells by 35, 25 and 8%, respectively. In contrast, 1 mM ascorbate increases iron accumulation by 20%. At a subtoxic concentration of 100 microM, chloroquine depresses ferritin and iron uptake by hepatocytes by more than 50% after 3 h incubation. Chloroquine presumably acts by retarding lysosomal degradation of ferritin and recycling of ferritin receptors.  相似文献   

8.
9.
The Ala/16Val dimorphism incorporates alanine (Ala) or valine (Val) in the mitochondrial targeting sequence of manganese superoxide dismutase (MnSOD), modifying MnSOD mitochondrial import and activity. In alcoholic cirrhotic patients, the Ala-MnSOD allele is associated with hepatic iron accumulation and an increased risk of hepatocellular carcinoma. The Ala-MnSOD variant could modulate the expression of proteins involved in iron storage (cytosolic ferritin), uptake (transferrin receptors, TfR-1 and-2), extrusion (hepcidin), and intracellular distribution (frataxin) to trigger hepatic iron accumulation. We therefore assessed the Ala/Val-MnSOD genotype and the hepatic iron score in 162 alcoholic cirrhotic patients. In our cohort, this hepatic iron score increased with the number of Ala-MnSOD alleles. We also transfected Huh7 cells with Ala-MnSOD-or Val-MnSOD-encoding plasmids and assessed cellular iron, MnSOD activity, and diverse mRNAs and proteins. In Huh7 cells, MnSOD activity was higher after Ala-MnSOD transfection than after Val-MnSOD transfection. Additionally, iron supplementation decreased transfected MnSOD proteins and activities. Ala-MnSOD transfection increased the mRNAs and proteins of ferritin, hepcidin, and TfR2, decreased the expression of frataxin, and caused cellular iron accumulation. In contrast, Val-MnSOD transfection had limited effects. In conclusion, the Ala-MnSOD variant favors hepatic iron accumulation by modulating the expression of proteins involved in iron homeostasis.  相似文献   

10.
11.
Cellular iron uptake and storage are coordinately controlled by binding of iron-regulatory proteins (IRP), IRP1 and IRP2, to iron-responsive elements (IREs) within the mRNAs encoding transferrin receptor (TfR) and ferritin. Under conditions of iron starvation, both IRP1 and IRP2 bind with high affinity to cognate IREs, thus stabilizing TfR and inhibiting translation of ferritin mRNAs. The IRE/IRP regulatory system receives additional input by oxidative stress in the form of H(2)O(2) that leads to rapid activation of IRP1. Here we show that treating murine B6 fibroblasts with a pulse of 100 microm H(2)O(2) for 1 h is sufficient to alter critical parameters of iron homeostasis in a time-dependent manner. First, this stimulus inhibits ferritin synthesis for at least 8 h, leading to a significant (50%) reduction of cellular ferritin content. Second, treatment with H(2)O(2) induces a approximately 4-fold increase in TfR mRNA levels within 2-6 h, and subsequent accumulation of newly synthesized protein after 4 h. This is associated with a profound increase in the cell surface expression of TfR, enhanced binding to fluorescein-tagged transferrin, and stimulation of transferrin-mediated iron uptake into cells. Under these conditions, no significant alterations are observed in the levels of mitochondrial aconitase and the Divalent Metal Transporter DMT1, although both are encoded by two as yet lesser characterized IRE-containing mRNAs. Finally, H(2)O(2)-treated cells display an increased capacity to sequester (59)Fe in ferritin, despite a reduction in the ferritin pool, which results in a rearrangement of (59)Fe intracellular distribution. Our data suggest that H(2)O(2) regulates cellular iron acquisition and intracellular iron distribution by both IRP1-dependent and -independent mechanisms.  相似文献   

12.
Ascorbic acid inhibits lysosomal autophagy of ferritin   总被引:2,自引:0,他引:2  
Ascorbic acid retards ferritin degradation in K562 erythroleukemia cells leading to an increase in the availability of cellular iron (Bridges, K. R., and Hoffman, K. E. (1986) J. Biol. Chem. 261, 14273-14277). To explore the mechanism of this effect, the influence of ascorbate on subcellular ferritin distribution was examined. Cellular ferritin was pulse-labeled with 59Fe for 2 h, after which the cells were hypotonically lysed and fractionated on an 8% Percoll density gradient. Immediately after the labeling, all of the ferritin was in the cytoplasmic fractions at the top of the gradient. When the labeling was followed by a 24-h period of growth, a portion of the ferritin shifted to the lysosome-associated fractions at the bottom of the gradient, consistent with lysosomal autophagy of cytoplasmic ferritin. When ascorbate was added to the culture medium during the 24-h incubation, the magnitude of the shift was reduced. This process was also examined by size-fractionation of the contents of labeled cells using a Sepharose CL-6B column. Immediately after labeling, ferritin emerged from the column in two peaks, indicating the existence of both ferritin monomer and aggregates within the cytoplasm. After a 24-h period of growth, the monomer peak disappeared, while a new ferritin peak coincident with lysosomes emerged again, indicative of lysosomal autophagy of ferritin. In cells cultured with ascorbate for 24-h, there was a marked attenuation of the shift of ferritin to the lysosomal fractions. The monomer peak disappeared, as in the controls, but there was instead, an accumulation of ferritin as cytoplasmic aggregates. The total ferritin content of the ascorbate-treated cells was increased by 4-fold over that of the control. These experiments indicate that ascorbate blocks the degradation of cytoplasmic ferritin by reducing lysosomal autophagy of the protein. The access to the cell of the potentially toxic iron stored within the ferritin molecule is thereby increased.  相似文献   

13.
The intracellular iron level exerts a negative feedback on transferrin receptor (TfR) expression in cells requiring iron for their proliferation, in contrast to the positive feedback observed in monocytes-macrophages. It has been suggested recently that modulation of TfR and ferritin synthesis by iron is mediated through a cytoplasmic protein(s) (iron regulatory element-binding protein(s) (IRE-BP)), which interacts with ferritin and TfR mRNA at the level of hairpin structures (IRE), thus leading to inhibition of transferrin mRNA degradation and repression of ferritin mRNA translation. In the present study we have evaluated in parallel the level of TfR expression, ferritin, and IRE-BP in cultures of: (i) circulating human lymphocytes stimulated to proliferate by phytohemagglutinin (PHA) and (ii) circulating human monocytes maturing in vitro to macrophages. The cells were grown in either standard or iron-supplemented culture. TfR and ferritin expression was evaluated at both the protein and mRNA level. IRE-BP activity was measured by gel retardation assay in the absence or presence of beta-mercaptoethanol (spontaneous or total IRE-BP activity, respectively). Spontaneous IRE-BP activity, already present at low level in quiescent T lymphocytes, shows a gradual and marked increase in PHA-stimulated T cells from day 1 of culture onward. This increase is directly and strictly correlated with the initiation and gradual rise of TfR expression, which is in turn associated with a decrease of ferritin content. Both the rise of TfR and spontaneous IRE-BP activity are completely inhibited in iron-supplemented T cell cultures. In contrast, the total IRE-BP level is similar in both quiescent and PHA-stimulated lymphocytes, grown in cultures supplemented or not with iron salts. Monocytes maturing in vitro to macrophages show a sharp increase of spontaneous and, to a lesser extent, total IRE-BP; the addition of iron moderately stimulates the spontaneous IRE-BP activity but not the total one. Here again, the rise of spontaneous IRE-BP from very low to high activity is strictly related to the parallel increase of TfR expression and, suprisingly, also with a very pronounced rise of ferritin expression observed at both the mRNA and protein level. It is noteworthy the effect of beta-mercaptoethanol is cell specific, i.e. the ratio of total versus spontaneous IRE-BP activity is different in activated lymphocytes and maturing monocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Ferritin is a multimer of 24 subunits of heavy and light chains. In mammals, iron taken into cells is stored in ferritin or incorporated into iron-containing proteins. Very little ferritin is found circulating in mammalian serum; most is retained in the cytoplasm. Female mosquitoes, such as Aedes aegypti (yellow fever mosquito, Diptera), require a blood meal for oogenesis. Mosquitoes receive a potentially toxic level of iron in the blood meal which must be processed and stored. We demonstrate by 59Fe pulse-chase experiments that cultured A. aegypti larval CCL-125 cells take up iron from culture media and store it in ferritin found mainly in the membrane fraction and secrete iron-loaded ferritin. We observe that in these larval cells ferritin co-localizes with ceramide-containing membranes in the absence of iron. With iron treatment, ferritin is found associated with ceramide-containing membranes as well as in cytoplasmic non-ceramide vesicles. Treatment of CCL-125 cells with iron and CI-976, an inhibitor of lysophospholipid acyl transferases, disrupts ferritin secretion with a concomitant decrease in cell viability. Interfering with ferritin secretion may limit the ability of mosquitoes to adjust to the high iron load of the blood meal and decrease iron delivery to the ovaries reducing egg numbers.  相似文献   

15.
The cellular uptake and storage of iron have to be tightly regulated in order to provide iron for essential cellular functions while preventing the iron-catalysed generation of reactive oxygen species (ROS). In contrast to cells in other organs, little is known about the regulation of iron metabolism in brain cells, particularly in astrocytes. To investigate the regulation of iron metabolism in astrocytes we have used primary astrocyte cultures from the brains of newborn rats. After application of ferric ammonium citrate (FAC), cultured astrocytes accumulated iron in a time- (0-48 h) and concentration-dependent (0.01-1 mm) manner. This accumulation was prevented if FAC was applied in combination with the iron-chelator deferoxamine (DFX). Application of FAC to astrocyte cultures caused a strong increase in the cellular content of the iron storage protein ferritin and a decrease in the amount of transferrin receptor (TfR), which is involved in the transferrin-mediated uptake of iron into cells. In contrast, application of DFX strongly increased the level of TfR. Both up-regulation of ferritin content by iron application and up-regulation of TfR content by DFX were prevented by the protein synthesis inhibitor cycloheximide (CHX). During incubation of astrocytes with FAC, a mild and transient increase in the extracellular activity of the cytosolic enzyme lactate dehydrogenase and in the concentration of intracellular ROS was observed. In contrast, prevention of protein synthesis by CHX during incubation with FAC resulted in significantly more cell loss and a persistent and intense increase in the production of intracellular ROS. These results demonstrate that both iron accumulation and deprivation modulate the synthesis of ferritin and TfR in astrocytes and that protein synthesis is required to prevent iron-mediated toxicity in astrocytes.  相似文献   

16.
17.
We have recently reported that red blood cells (RBC) promote T cell growth and survival by inhibiting activation-induced T cell death. In the present study, we have examined parameters of oxidative stress and intracellular iron in activated T cells and correlated these data with the expression of ferritin, heme oxygenase-1 (HO-1), and the transferrin receptor CD71. T cells growing in the presence of RBC had reduced levels of reactive oxygen species (ROS) and oxidatively modified proteins, suggesting that RBC efficiently counteracted ROS production on the activated T cells. Flow cytometry and immunodetection demonstrated that T cells dividing in the presence of RBC had increased levels of intracellular ferritin rich in L-subunits and HO-1 along with a downmodulation in CD71 expression. Finally, using the fluorescent iron indicator calcein and flow cytometry analysis, we were able to show that a relative amount of the labile iron pool (LIP) was upregulated in T cells growing in the presence of RBC. These findings are consistent with a typical response to iron overload. However, neither heme compounds nor ferric iron reproduced the levels of expansion and survival of T cells induced by intact RBC. Altogether, these data suggest that RBC inhibit apoptosis of activated T cells by a combination of ROS scavenging and upregulation of cytoprotective proteins such as ferritin and HO-1, which may counteract a possible toxic effect of the increased intracellular free iron.  相似文献   

18.
Chronic exposure to low doses of arsenite causes transformation of human osteogenic sarcoma (HOS) cells. Although oxidative stress is considered important in arsenite-induced cell transformation, the molecular and cellular mechanisms by which arsenite transforms human cells are still unknown. In the present study, we investigated whether altered iron homeostasis, known to affect cellular oxidative stress, can contribute to the arsenite-mediated cell transformation. Using arsenite-induced HOS cell transformation as a model, it was found that total iron levels are significantly higher in transformed HOS cells in comparison to parental control HOS cells. Under normal iron metabolism conditions, iron homeostasis is tightly controlled by inverse regulation of ferritin and transferrin receptor (TfR) through iron regulatory proteins (IRP). Increased iron levels in arsenite transformed cells should theoretically lead to higher ferritin and lower TfR in these cells than in controls. However, the results showed that both ferritin and TfR are decreased, apparently through two different mechanisms. A lower ferritin level in cytoplasm was due to the decreased mRNA in the arsenite-transformed HOS cells, while the decline in TfR was due to a lowered IRP-binding activity. By challenging cells with iron, it was further established that arsenite-transformed HOS cells are less responsive to iron treatment than control HOS cells, which allows accumulation of iron in the transformed cells, as exemplified by significantly lower ferritin induction. On the other hand, caffeic acid phenethyl ester (CAPE), an antioxidant previously shown to suppress As-mediated cell transformation, prevents As-mediated ferritin depletion. In conclusion, our results suggest that altered iron homeostasis contributes to arsenite-induced oxidative stress and, thus, may be involved in arsenite-mediated cell transformation.  相似文献   

19.
We have previously shown that several antioxidant compounds inhibit the proliferation of T lymphocytes stimulated with alloantigen (Chaudhri, G., Clark, I. A., Hunt, N. H., Cowden, W. B., and Ceredig, R., J. Immunol. 136, 2646, 1986). We concluded from these studies that free oxygen radicals are positive mediators in T-lymphocyte activation and proliferation. In order to extend these studies we examined the effects of antioxidants on T cells stimulated with a combination of phorbol myristate acetate (PMA) and ionomycin. The following antioxidants were used: ferricyanide, an inhibitor of superoxide production; iron chelators, which block hydroxyl radical formation; and butylated hydroxyanisole, a free radical scavenger. Responder cells included purified peripheral T cells (Lyt-2+ or L3T4+ cells) and immature (Lyt-2-/L3T4-) thymocytes. All agents, in the micromolar range, caused a dose-dependent inhibition of proliferation of each T-cell subset studied. Flow microfluorometric analysis of T cells stimulated for 48 hr showed that the expression of interleukin-2 (IL-2) receptors and transferrin receptors was inhibited by all the antioxidants tested but not by hydroxyurea (HU), an inhibitor of the enzyme ribonucleotide reductase. In contrast, the expression of a third activation marker, phagocytic glycoprotein-1 (Pgp-1 or Lyt-24), was not affected by any of the agents. Furthermore, while both the antioxidants and HU inhibited T-cell cycling, analysis of a light-scattering parameter related to cell size indicated that the antioxidant-treated cells remained small while the HU-treated and control cells were larger and blast-like. Therefore, the mechanism of action of the three classes of antioxidants is similar, but quite distinct from the inhibition of proliferation caused by HU. Taken together, these results suggest that free radicals are involved in specific early events in T-cell activation.  相似文献   

20.
V. Majerus  P. Bertin  S. Lutts 《Plant and Soil》2009,324(1-2):253-265
Iron toxicity occurs under flooded conditions such as those prevailing in lowland rice fields and is due to an excess of ferrous ions. Ferritin is a multimeric protein responsible for Fe sequestration and storage, playing a key role in Fe homeostasis. Our aim was to study the modalities of overall ferritin synthesis in different organs of young seedlings from the African rice species (Oryza glaberrima) in relation to the putative involvement of abscisic acid (ABA) and oxidative stress in signalling processes. Seedlings from a moderately resistant to iron toxicity cultivar were grown in hydroponic culture for 2 weeks and treated with 500 mg l?1 Fe2+ in the presence or in the absence of 200?µM ABA, 50?µM methylviologen or 50?µM fluridone. Iron treatment increased iron and malondialdehyde concentration in all organs as well as ABA in roots and laminae. Although ferritin protein was detected in controls plants, iron treatment strongly reinforced its accumulation in sheaths and laminae after 24 h and 72 h. Ferritin mRNA was induced as early as 24 h after the beginning of the Fe-treatment in sheaths and, to a higher extent, in laminae. In the absence of iron treatment, exogenous ABA increased ferritin mRNA in laminae only but did not lead to further ferritin accumulation. Unexpectedly, it decreased ferritin mRNA levels in the sheaths of iron-treated plants and may thus have a dual influence depending on the considered organ. The inhibitor of ABA synthesis fluridone reduced endogenous ABA but did not compromise ferritin gene expression or ferritin synthesis, whatever the iron dose. Methyviologen application induced obvious oxidative damages but reduced ferritin synthesis. It is suggested that the signalling pathway leading to ferritin synthesis in the semi-aquatic African rice species may involve other components than those reported for typical terrestrial plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号