首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biodegradation kinetics of 2,4-dichlorophenol (2,4-DCP) by culture (Culture M) acclimated to mixture of 4-chlorophenol (4-CP) and 2,4-DCP and the culture (Culture 4) acclimated to 4-CP only were investigated in aerobic batch reactors. Also, pure strains isolated from mixed cultures were searched for their ability towards the biodegradation of 2,4-DCP. Culture 4 was able to completely degrade 2,4-DCP up to 80 mg/L within 30 h and removal efficiency dropped to 21% upon increasing initial concentration to 108.8 mg/L. When the Culture M was used, complete degradation of 2,4-DCP in the range of 12.5-104.4 mg/L was attained. A linear relationship between time required for complete degradation and initial 2,4-DCP concentrations was observed for both mixed cultures. It was observed that the Haldane equation can be used to predict specific degradation rate (SDR) (R(2)>0.99) as a function of initial 2,4-DCP concentrations and it adequately describes 2,4-DCP concentration profiles. Both of the mixed cultures settled well, which is important to maintain good removal efficiency for longer periods of time for real full-scale applications. Although the pure strains isolated from mixed cultures were found to have higher SDR of 2,4-DCP compared to mixed cultures, they did not settle well under quiescent conditions.  相似文献   

2.
The objective of this study was to achieve a better quantitative understanding of the kinetics of 2,4,6-trichlorophenol (TCP) biodegradation by an acclimated mixed microbial culture. An aerobic mixed microbial culture, obtained from the aeration basin of the wastewater treatment plant, was acclimated in shake flasks utilizing various combinations of 2,4,6-TCP (25–100 mg l−1), phenol (300 mg l−1) and glycerol (2.5 mg l−1) as substrates. Complete primary TCP degradation and a corresponding stoichiometric release of chloride ion were observed by HPLC and IEC analytical techniques, respectively. The acclimated cultures were then used as an inoculum for bench scale experiments in a 4 l stirred-tank reactor (STR) with 2,4,6-TCP as the sole carbon/energy (C/E) source. The phenol acclimated mixed microbial culture consisted of primarily Gram positive and negative rods and was capable of degrading 2,4,6-TCP completely. None of the predicted intermediate compounds were detected by gas chromatography in the cell cytoplasm or supernatant. Based on the disappearance of 2,4,6-TCP, degradation was well modelled by zero-order kinetics which was also consistent with the observed oxygen consumption. Biodegradation rates were compared for four operating conditions including two different initial 2,4,6-TCP concentrations and two different initial biomass concentrations. While the specific rate constant was not dependent on the initial 2,4,6-TCP concentration, it did depend on the initial biomass concentration (X init). A lower biomass concentration gave a much higher zero-order specific degradation rate. This behaviour was attributed to a lower average biomass age or cell retention time (θx) for these cultures. The implications of this investigation are important for determining and predicting the potential risks associated with TCP, its degradation in the natural environment or the engineering implications for ex situ treatment of contaminated ground water or soil.  相似文献   

3.
This study evaluated the kinetics of simultaneous biodegradation of peptone mixture and 2,6-dihydroxybenzoic acid (2,6-DHBA) by an acclimated dual microbial culture under aerobic conditions. A laboratory-scale sequencing batch reactor was sustained at steady-state with peptone mixture feeding. During the study period, peptone mixture feeding was continuously supplemented with 2,6-DHBA. Related experimental data were derived from three sets of parallel batch reactors, the first fed with the peptone mixture, the second with 2,6-DHBA and the third one with the two substrates, after acclimation of microbial culture and simultaneous biodegradation of both organics. A mechanistic model was developed for this purpose including the necessary model components and process kinetics for the model calibration of relevant experimental data. Model evaluation provided all biodegradation characteristics and kinetics for both peptone mixture and 2,6-DHBA. It also supported the development of a dual microbial community through acclimation, with the selective growth of a second group of microorganisms specifically capable of metabolizing 2,6-DHBA as an organic carbon source.  相似文献   

4.
The anaerobic accumulation of several organic pollutants from industrial wastewaters, as storage substrates, and their subsequent aerobic biodegradation using a wastewater treatment mixed microbial culture for biological nutrient removal has been studied. The amount and the kinetics of substrate accumulation in the anaerobic stage depended on the characteristics of the wastewater fed to the anaerobic stage. Depending on the substrate used, levels of between 27 and 86% of storage polymers were accumulated with respect to the level obtained on feeding with acetate. The biodegradation kinetics were studied by modelling respirometry results. During the aerobic stage, oxygen-consumption data obtained in the respirometric tests were fitted to a model using a non-linear fitting estimation method. The simulation data obtained correlated well with the experimental oxygen-consumption data. The estimated kinetic parameters obtained indicate that each storage polymer was degraded at a different rate. However, the values obtained for the storage polymer half-saturation coefficient, KS: 16 mg COD l−1, and for the coefficient for endogenous respiration, b: 0.008 h−1, were similar in all the experiments. The results indicate that each substrate produces the synthesis of a specific storage polymer that is degraded at a different rate.  相似文献   

5.
Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture   总被引:16,自引:0,他引:16  
Chlorinated ethenes are toxic substances which are widely distributed groundwater contaminants and are persistent in the subsurface environment. Reports on the biodegradation of these compounds under anaerobic conditions which might occur naturally in groundwater show that these substances degrade very slowly, if at all. Previous attempts to degrade chlorinated ethenes aerobically have produced conflicting results. A mixed culture containing methane-utilizing bacteria was obtained by methane enrichment of a sediment sample. Biodegradation experiments carried out in sealed culture bottles with radioactively labeled trichloroethylene (TCE) showed that approximately half of the radioactive carbon had been converted to 14CO2 and bacterial biomass. In addition to TCE, vinyl chloride and vinylidene chloride could be degraded to products which are not volatile chlorinated substances and are therefore likely to be further degraded to CO2. Two other chlorinated ethenes, cis and trans-1,2-dichloroethylene, were shown to degrade to chlorinated products, which appeared to degrade further. A sixth chlorinated ethene, tetrachloroethylene, was not degraded by the methane-utilizing culture under these conditions. The biodegradation of TCE was inhibited by acetylene, a specific inhibitor of methane oxidation by methanotrophs. This observation supported the hypothesis that a methanotroph is responsible for the observed biodegradations.  相似文献   

6.
Biodegradation of polyvinyl alcohol by a mixed microbial culture   总被引:1,自引:0,他引:1  
A mixed culture capable of degrading 1 g l−1 polyvinyl alcohol (PVA) completely was screened from sludge samples at Pacific Textile Factory, Wuxi, China. This mixed culture had stronger capability of degrading PVA with low polymerization and high saponification than degrading PVA with high polymerization and low saponification. Inorganic nitrogen source was more suitable for the mixed culture to grow and degrade PVA than organic nitrogen source. Microorganisms and relative abundance of this mixed culture were explored by terminal restriction fragment length polymorphism (T-RFLP). Small PVA molecules were detected in cell extracts of the mixed culture. This indicated that PVA degradation in the mixed culture was in fact a combined action of extracellular and intracellular enzymes. Two strains producing extracellular PVA-degrading enzyme were isolated from the mixed culture. They could individually degrade PVA1799 with polymerization of 1700 from initial average molecular weight 112,981 to 98,827 Da and 84,803 Da, respectively. However, only small amount of PVA124 in polymerization of 400 could be degraded by these two strains.  相似文献   

7.
Anaerobic degradation of phenol using an acclimated mixed culture   总被引:1,自引:0,他引:1  
Summary Anaerobic methanogenesis of phenol using mixed cultures derived from cow dung and municipal sewage sludge and adapted to phenol was done in batch reactors. The phenol degradation rate depended on the period in which the culture was acclimated to phenol. Interference in phenol uptake by glucose was observed. Consumption of both phenol and acetic acid was observed when an acetate-adapted culure was used. A phenol-acclimated culture was able to degrade dihydroxy phenols thus indicating the feasibility of cross-acclimation. Offprint requests to: P. Ghosh  相似文献   

8.
Chlorinated ethenes are toxic substances which are widely distributed groundwater contaminants and are persistent in the subsurface environment. Reports on the biodegradation of these compounds under anaerobic conditions which might occur naturally in groundwater show that these substances degrade very slowly, if at all. Previous attempts to degrade chlorinated ethenes aerobically have produced conflicting results. A mixed culture containing methane-utilizing bacteria was obtained by methane enrichment of a sediment sample. Biodegradation experiments carried out in sealed culture bottles with radioactively labeled trichloroethylene (TCE) showed that approximately half of the radioactive carbon had been converted to 14CO2 and bacterial biomass. In addition to TCE, vinyl chloride and vinylidene chloride could be degraded to products which are not volatile chlorinated substances and are therefore likely to be further degraded to CO2. Two other chlorinated ethenes, cis and trans-1,2-dichloroethylene, were shown to degrade to chlorinated products, which appeared to degrade further. A sixth chlorinated ethene, tetrachloroethylene, was not degraded by the methane-utilizing culture under these conditions. The biodegradation of TCE was inhibited by acetylene, a specific inhibitor of methane oxidation by methanotrophs. This observation supported the hypothesis that a methanotroph is responsible for the observed biodegradations.  相似文献   

9.
Biodegradation of methyl tert-butyl ether by a pure bacterial culture.   总被引:8,自引:0,他引:8  
Biodegradation of methyl tert-butyl ether (MTBE) by the hydrogen-oxidizing bacterium Hydrogenophaga flava ENV735 was evaluated. ENV735 grew slowly on MTBE or tert-butyl alcohol (TBA) as sole sources of carbon and energy, but growth on these substrates was greatly enhanced by the addition of a small amount of yeast extract. The addition of H(2) did not enhance or diminish MTBE degradation by the strain, and MTBE was only poorly degraded or not degraded by type strains of Hydrogenophaga or hydrogen-oxidizing enrichment cultures, respectively. MTBE degradation activity was constitutively expressed in ENV735 and was not greatly affected by formaldehyde, carbon monoxide, allyl thiourea, or acetylene. MTBE degradation was inhibited by 1-amino benzotriazole and butadiene monoepoxide. TBA degradation was inducible by TBA and was inhibited by formaldehyde at concentrations of >0.24 mM and by acetylene but not by the other inhibitors tested. These results demonstrate that separate, independently regulated genes encode MTBE and TBA metabolism in ENV735.  相似文献   

10.
Biodegradation of methyl tert-butyl ether by a bacterial pure culture.   总被引:8,自引:0,他引:8  
A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE degradation by 2 x 10(6) cells ml(-1) were 0.07, 1.17, and 3.56 microg ml(-1) h(-1) for initial concentrations of 5, 50, and 500 microg MTBE ml(-1), respectively. When incubated with 20 microg of uniformly labeled [(14)C]MTBE ml(-1), strain PM1 converted 46% to (14)CO(2) and 19% to (14)C-labeled cells within 120 h. This yield is consistent with the measurement of protein accumulation at different MTBE concentrations from which was estimated a biomass yield of 0.18 mg of cells mg MTBE(-1). Strain PM1 was inoculated into sediment core material collected from a contaminated groundwater plume at Port Hueneme, California, in which there was no evidence of MTBE degradation. Strain PM1 readily degraded 20 microg of MTBE ml(-1) added to the core material. The rate of MTBE removal increased with additional inputs of 20 microg of MTBE ml(-1). These results suggest that PM1 has potential for use in the remediation of MTBE-contaminated environments.  相似文献   

11.
A mixed microbial culture originating from a petroleum-contaminated site and maintained on crude oil exhibited high 2,4,6-trinitrotoluene (TNT) transformation activity. Cultivation of the mixed culture in glucose-containing medium for 29 h resulted in almost complete transformation of 100 ppm TNT. TNT transformation was observed with both growing and resting cells. With subculturing, it was found that TNT could support growth of the mixed culture when supplied as sole carbon source, sole nitrogen source, or sole carbon and nitrogen source. The finding that a mixed microbial culture maintained on crude oil exhibited high TNT transformation activity without prior subculture on TNT-containing media is novel and may have potential practical applications in the bioremediation of munitions-contaminated soil and wastewater.  相似文献   

12.
Neither Flavobacterium sp. nor Pseudomonas sp. grew on a polyethylene glycol (PEG) 6000 medium containing the culture filtrate of their mixed culture on PEG 6000. The two bacteria did not grow with a dialysis culture on a PEG 6000 medium. Flavobacterium sp. grew well on a dialysis culture containing a tetraethylene glycol medium supplemented with a small amount of PEG 6000 as an inducer, while poor growth of Pseudomonas sp. was observed. Three enzymes involved in the metabolism of PEG, PEG dehydrogenase, PEG-aldehyde dehydrogenase and PEG-carboxylate dehydrogenase (ether-cleaving) were present in the cells of Flavobacterium sp. The first two enzymes were not found in the cells of Pseudomonas sp. PEG 6000 was degraded neither by intact cells of Flavobacterium sp. nor by those of Pseudomonas sp., but it was degraded by their mixture. Glyoxylate, a metabolite liberated by the ether-cleaving enzyme, inhibited the growth of the mixed culture. The ether-cleaving enzyme was remarkably inhibited by glyoxylate. Glyoxylate was metabolized faster by Pseudomonas sp. than by Flavobacterium sp., and seemed to be a key material for the symbiosis.  相似文献   

13.
Summary The ability of a mixed bacterial culture to decompose two tetrameric lignin model com-pounds as a sole source of carbon and energy was investigated. The mixed bacterial culture con-sisted mainly of Gram negative rods. The tetram-ers contained two types of lignin substructures, namely the most abundant β-O-4 ether structure in lignin and also the 5-5 biphenyl structure. The tetramer (MW 638) containing two phe-nolic hydroxyls was decomposed readily; after 13 days of incubation, all intermediate products formed were almost totally decomposed. The non-phenolic tetramer (MW 666) was decom-posed much more slowly; after 53 days of incuba-tion, 5% of the substrate was unchanged. When both tetramers were degraded simultaneously, the non-phenolic tetramer was decomposed similarly to the phenolic tetramer. Determination of molecular weights of cata-bolic products showed that the degradation of the non-phenolic tetramer had proceeded at least to dimer level. SKF 525A, inhibitor of cytochrome P-450, caused one catabolic product to accumulate in the culture medium. This indicates involvement of cy-tochrome P-450 in the degradation pathway of the model compounds used. We conclude that this mixed bacterial culture was able to degrade the lignin model compounds used and that free phenolic groups seem to in-crease the biodegradability significantly.  相似文献   

14.
The inhibitory effect of ammonium sulfate on a commercial mixed culture, used in biological waste-water treatment was studied under aerobic batch conditions. Several mathematical models of enzyme and growth kinetics including a death factor were analyzed through nonlinear regression to find the best fit to corresponding data of inhibition. The best fit model was found to be the generalized Monod type with a death factor having the biokinetic parameters; μmax 0.681 h−1, Ks 0.224 g dm−3, Ki 56240 g dm−3, K 0.055 g dm−3 and kd 0.052 h−1 to represent the experimental data accurately. The low saturation coefficient value along with high maximum specific growth rate and inhibition coefficient denotes the competitive characteristics of commercial mixed cultures in the biological treatment of high ammonium polluted waste waters.  相似文献   

15.
A mixed culture of nitrate-reducing bacteria degraded o-cresol in the presence of toulene as a primary growth substrate. No degradation of o-cresol was observed in the absence of toluene or when the culture grew on p-cresol and 2,4-dimethylphenol. In batch cultures, the degradation of o-cresol started after toluene was degraded to below 0.5 to 1.0 mg/liter but continued only for about 3 to 5 days after the depletion of toluene since the culture had a limited capacity for o-cresol degradation once toluene was depleted. The total amount of o-cresol degraded was proportional to the amount of toluene metabolized, with an average yield of 0.47 mg of o-cresol degraded per mg of toluene metabolized. Experiments with [ring-U-14C]o-cresol indicated that about 73% of the carbon from degraded o-cresol was mineralized to CO2 and about 23% was assimilated into biomass after the transient accumulation of unidentified water-soluble intermediates. A mathematical model based on a simplified Monod equation is used to describe the kinetics of o-cresol degradation. In this model, the biomass activity toward o-cresol is assumed to decay according to first-order kinetics once toluene is depleted. On the basis of nonlinear regression of the data, the maximum specific rate of o-cresol degradation was estimated to be 0.4 mg of o-cresol per mg of biomass protein per h, and the first-order decay constant for o-cresol-degrading biomass activity was estimated to be 0.15 h-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A technique for investigating the kinetics of salmonella enrichment is reported. Its use with four enrichment media (Rappaport's medium, Muller-Kauffmann tetrathionate broth (MKT) tetrathionate broth and selenite F) is described and the effect of elevated temperature on the growth kinetics shown. Rappaport's medium at 37 degrees C and MKT at either 37 degrees C or 42 degrees C were far superior to selenite F and tetrathionate broth in their selective properties and, with the exception of Rappaport's medium, the use of elevated temperature increased the selectivity of the media.  相似文献   

17.
Growth kinetics of mixed culture in salmonella enrichment media   总被引:3,自引:3,他引:0  
R hodes , P., Q uesnel , L.B. & C ollard , P. 1985. Growth kinetics of mixed culture in salmonella enrichment media. Journal of Applied Bacteriology 59 , 231–237.
A technique for investigating the kinetics of salmonella enrichment is reported. Its use with four enrichment media (Rappaport' medium, Muller-Kauffmann tetra-thionate broth (MKT) tetrathionate broth and selenite F) is described and the effect of elevated temperature on the growth kinetics shown. Rappaport' medium at 37C and MKT at either 37C or 42C were far superior to selenite F and tetrathionate broth in their selective properties and, with the exception of Rappaport' medium, the use of elevated temperature increased the selectivity of the media.  相似文献   

18.
This aim of this study was to remove triethylamine by a biological method, as well as to understand the ability of mixed bacteria cultures to treat a triethylamine compound from synthetic wastewater. The mixed bacteria cultures could not remove triethylamine, whether the activated sludge came from an acrylonitrile–butadiene–styrene resin manufactured wastewater treatment system or a waterborne polyurethane resin manufactured wastewater treatment system. When the mixed bacteria cultures were acclimated to triethylamine, they could utilize 650 mg l−1 triethylamine for growth. When the initial triethylamine concentration was below 200 mg l−1, the triethylamine removal efficiency could reach 100%. The triethylamine removal rate of the acclimated GMIX sludge was faster than the acclimated EMIX sludge.  相似文献   

19.
Biodegradation of sulfamethoxazole by individual and mixed bacteria   总被引:1,自引:0,他引:1  
Antibiotic compounds, like sulfamethoxazole (SMX), have become a concern in the aquatic environment due to the potential development of antibacterial resistances. Due to excretion and disposal, SMX has been frequently detected in wastewaters and surface waters. SMX removal in conventional wastewater treatment plants (WWTPs) ranges from 0% to 90%, and there are opposing results regarding its biodegradability at lab scale. The objective of this research was to determine the ability of pure cultures of individual and mixed consortia of bacteria (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas putida, Rhodococcus equi, Rhodococcus erythropolis, Rhodococcus rhodocrous, and Rhodococcus zopfii) known to exist in WWTP activated sludge to remove SMX. Results showed that R. equi alone had the greatest ability to remove SMX leading to 29% removal (with glucose) and the formation of a metabolite. Degradation pathways and metabolite structures have been proposed based on the potential enzymes produced by R. equi. When R. equi was mixed with other microorganisms, a positive synergistic effect was not observed and the maximum SMX removal achieved was 5%. This indicates that pure culture results cannot be extrapolated to mixed culture conditions, and the methodology developed here to study the biodegradability of compounds under controlled mixed culture conditions offers an alternative to conventional studies using pure bacterial cultures or inocula from activated sludge sources consisting of unknown and variable microbial populations.  相似文献   

20.
Three pure bacterial cultures degrading methyl t-butyl ether (MTBE) were isolated from activated sludge and fruit of the Gingko tree. They have been classified as belonging to the genuses Methylobacterium, Rhodococcus, and Arthrobacter. These cultures degraded 60 ppm MTBE in 1–2 weeks of incubation at 23–25 °C. The growth of the isolates on MTBE as sole carbon source is very slow compared with growth on nutrient-rich medium. Uniformly-labeled [14C]MTBE was used to determine 14CO2 evolution. Within 7 days of incubation, about 8% of the initial radioactivity was evolved as 14CO2. These strains also grow on t-butanol, butyl formate, isopropanol, acetone and pyruvate as carbon sources. The presence of these compounds in combination with MTBE decreased the degradation of MTBE. The cultures pregrown on pyruvate resulted in a reduction in 14CO2 evolution from [14C]MTBE. The availability of pure cultures will allow the determination of the pathway intermediates and the rate-limiting steps in the degradation of MTBE. Received: 8 December 1995 / Received last revision: 5 August 1996 / Accepted: 12 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号