首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SCUBE3 (signal peptide CUB-EGF-like domain-containing protein 3) belongs to a newly identified secreted and cell membrane-associated SCUBE family, which is evolutionarily conserved in vertebrates. Scube3 is predominantly expressed in a variety of developing tissues in mice such as somites, neural tubes, and limb buds. However, its function during development remains unclear. In this study, we first showed that knockdown of SCUBE3 in C2C12 myoblasts inhibited FGF receptor 4 expression and FGF signaling, thus resulting in reduced myogenic differentiation. Furthermore, knockdown of zebrafish scube3 by antisense morpholino oligonucleotides specifically suppressed the expression of the myogenic marker myod1 within the lateral fast muscle precursors, whereas its expression in the adaxial slow muscle precursors was largely unaffected. Consistent with these findings, immunofluorescent staining of fast but not slow muscle myosin was markedly decreased in scube3 morphants. Further genetic studies identified fgf8 as a key regulator in scube3-mediated fast muscle differentiation in zebrafish. Biochemical and molecular analysis showed that SCUBE3 acts as a FGF co-receptor to augment FGF8 signaling. Scube3 may be a critical upstream regulator of fast fiber myogenesis by modulating fgf8 signaling during zebrafish embryogenesis.  相似文献   

2.

Background

Folate is an essential nutrient for cell survival and embryogenesis. 10-Formyltetrahydrofolate dehydrogenase (FDH) is the most abundant folate enzyme in folate-mediated one-carbon metabolism. 10-Formyltetrahydrofolate dehydrogenase converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2, the only pathway responsible for formate oxidation in methanol intoxication. 10-Formyltetrahydrofolate dehydrogenase has been considered a potential chemotherapeutic target because it was down-regulated in cancer cells. However, the normal physiological significance of 10-Formyltetrahydrofolate dehydrogenase is not completely understood, hampering the development of therapeutic drug/regimen targeting 10-Formyltetrahydrofolate dehydrogenase.

Methods

10-Formyltetrahydrofolate dehydrogenase expression in zebrafish embryos was knocked-down using morpholino oligonucleotides. The morphological and biochemical characteristics of fdh morphants were examined using specific dye staining and whole-mount in-situ hybridization. Embryonic folate contents were determined by HPLC.

Results

The expression of 10-formyltetrahydrofolate dehydrogenase was consistent in whole embryos during early embryogenesis and became tissue-specific in later stages. Knocking-down fdh impeded morphogenetic movement and caused incorrect cardiac positioning, defective hematopoiesis, notochordmalformation and ultimate death of morphants. Obstructed F-actin polymerization and delayed epiboly were observed in fdh morphants. These abnormalities were reversed either by adding tetrahydrofolate or antioxidant or by co-injecting the mRNA encoding 10-formyltetrahydrofolate dehydrogenase N-terminal domain, supporting the anti-oxidative activity of 10-formyltetrahydrofolate dehydrogenase and the in vivo function of tetrahydrofolate conservation for 10-formyltetrahydrofolate dehydrogenase N-terminal domain.

Conclusions

10-Formyltetrahydrofolate dehydrogenase functioned in conserving the unstable tetrahydrofolate and contributing to the intracellular anti-oxidative capacity of embryos, which was crucial in promoting proper cell migration during embryogenesis.

General significance

These newly reported tetrahydrofolate conserving and anti-oxidative activities of 10-formyltetrahydrofolate dehydrogenase shall be important for unraveling 10-formyltetrahydrofolate dehydrogenase biological significance and the drug development targeting 10-formyltetrahydrofolate dehydrogenase.  相似文献   

3.
4.
5.
6.
Changes in retinoic acid signaling alter otic patterning   总被引:1,自引:0,他引:1  
Retinoic acid (RA) has pleiotropic functions during embryogenesis. In zebrafish, increasing or blocking RA signaling results in enlarged or reduced otic vesicles, respectively. Here we elucidate the mechanisms that underlie these changes and show that they have origins in different tissues. Excess RA leads to ectopic foxi1 expression throughout the entire preplacodal domain. Foxi1 provides competence to adopt an otic fate. Subsequently, pax8, the expression of which depends upon Foxi1 and Fgf, is also expressed throughout the preplacodal domain. By contrast, loss of RA signaling does not affect foxi1 expression or otic competence, but instead results in delayed onset of fgf3 expression and impaired otic induction. fgf8 mutants depleted of RA signaling produce few otic cells, and these cells fail to form a vesicle, indicating that Fgf8 is the primary factor responsible for otic induction in RA-depleted embryos. Otic induction is rescued by fgf8 overexpression in RA-depleted embryos, although otic vesicles never achieve a normal size, suggesting that an additional factor is required to maintain otic fate. fgf3;tcf2 double mutants form otic vesicles similar to RA-signaling-depleted embryos, suggesting a signal from rhombomere 5-6 may also be required for otic fate maintenance. We show that rhombomere 5 wnt8b expression is absent in both RA-signaling-depleted embryos and in fgf3;tcf2 double mutants, and inactivation of wnt8b in fgf3 mutants by morpholino injection results in small otic vesicles, similar to RA depletion in wild type. Thus, excess RA expands otic competence, whereas the loss of RA impairs the expression of fgf3 and wnt8b in the hindbrain, compromising the induction and maintenance of otic fate.  相似文献   

7.
8.
9.
The MAPKs are key regulatory signaling molecules in many cellular processes. Here we define differential functions for ERK1 and ERK2 MAPKs in zebrafish embryogenesis. Morpholino knockdown of ERK1 and ERK2 resulted in cell migration defects during gastrulation, which could be rescued by co-injection of the corresponding mRNA. Strikingly, Erk2 mRNA cross-rescued ERK1 knockdown, but erk1 mRNA was unable to compensate for ERK2 knockdown. Cell-tracing experiments revealed a convergence defect for ERK1 morphants without a severe posterior-extension defect, whereas ERK2 morphants showed a more severe reduction in anterior-posterior extension. These defects were primary changes in gastrulation cell movements and not caused by altered cell fate specification. Saturating knockdown conditions showed that the absence of FGF-mediated dual-phosphorylated ERK2 from the blastula margin blocked initiation of epiboly, actin and tubulin cytoskeleton reorganization processes and further arrested embryogenesis, whereas ERK1 knockdown had only a mild effect on epiboly progression. Together, our data define distinct roles for ERK1 and ERK2 in developmental cell migration processes during zebrafish embryogenesis.  相似文献   

10.
11.
12.
In vertebrates, epibranchial placodes are transient ectodermal thickenings that contribute sensory neurons to the epibranchial ganglia. These ganglia innervate internal organs and transmit information on heart rate, blood pressure and visceral distension from the periphery to the central nervous system. Despite their importance, the molecular mechanisms that govern the induction and neurogenesis of the epibranchial placodes are only now being elucidated. In this study, we demonstrate that endoderm is required for neurogenesis of the zebrafish epibranchial placodes. Mosaic analyses confirm that endoderm is the source of the neurogenic signal. Using a morpholino knockdown approach, we find that fgf3 is required for the majority of placode cells to undergo neurogenesis. Tissue transplants demonstrate that fgf3 activity is specifically required in the endodermal pouches. Furthermore, ectopic fgf3 expression is sufficient for inducing phox2a-positive neurons in wild-type and endoderm-deficient embryos. Surprisingly, ectodermal foxi1 expression, a marker for the epibranchial placode precursors, is present in both endoderm-deficient embryos and fgf3 morphants, indicating that neither endoderm nor Fgf3 is required for initial placode induction. Based on these findings, we propose a model for epibranchial placode development in which Fgf3 is a major endodermal determinant required for epibranchial placode neurogenesis.  相似文献   

13.
14.
在龙眼体胚发生早期的蛋白质组学研究中,发现1个体胚发生相关未知蛋白DlUP-3,通过简并引物结合RACE技术进行其基因全长序列克隆。结果显示:(1)克隆到的龙眼体胚发生相关未知蛋白基因DlUP-3的全长cDNA序列为1 681bp,开放阅读框由1 017个核苷酸组成,编码338个氨基酸(GenBank登录号为GQ167202)。(2)生物信息学分析发现,该基因推导蛋白分子量为36 854.2Da,pI为9.05;该蛋白为Ras蛋白质家族成员,具有ATP/GTP-binding site motif A(P-loop)结合位点和1个典型的Ras_like_GTPase superfamily组件,无典型信号肽结构,但有跨膜螺旋的亲水性蛋白;不规则卷曲是其最大量的结构元件,散布于整个蛋白质中。(3)实时荧光定量PCR分析显示,该基因在龙眼体胚发生过程中均有表达,其中以胚性愈伤组织阶段表达量最低,而球形胚阶段最高。研究表明,DlUP-3基因在龙眼体胚发生过程尤其是球形胚阶段有重要的作用,为进一步研究该基因在龙眼体胚发生过程中的功能奠定了基础。  相似文献   

15.
16.
Lou Q  He J  Hu L  Yin Z 《Biochimica et biophysica acta》2012,1823(5):1024-1032
It has been suggested that mouse lbx1 is essential for directing hypaxial myogenic precursor cell migration. In zebrafish, the expression of lbx1a, lbx1b, and lbx2 has been observed in pectoral fin buds. It has also been shown that knocking down endogenous lbx2 in zebrafish embryos diminishes myoD expression in the pectoral fin bud. However, downstream lbxs signals remain largely unexplored. Here, we describe a previously unknown function of zebrafish lbx2 (lbx2) during convergent extension (CE) movements. The abrogation of the lbx2 function by two non-overlapping morpholino oligonucleotides (MOs) resulted in the defective convergence and extension movements in morphants during gastrulation. Our transplantation studies further demonstrated that the overexpression of lbx2 autonomously promotes CE movements. Expression of wnt5b is significantly reduced in lbx2 morphants. We have demonstrated that application of the wnt5b MO, a dominant-negative form of disheveled (Dvl) and a chemical inhibitor of Rho-associated kinase Y27632 in zebrafish embryos have effects reminiscent that are of the CE and hypaxial myogenesis defects observed in lbx2 morphants. Moreover, the CE and hypaxial mesoderm defects seen in lbx2 morphants can be rescued by co-injection with wnt5b or RhoA mRNA. However, this reduced level of active RhoA and hypaxial myogenesis defects in the embryos injected with the dominant-negative form of Dvl mRNA cannot be effectively restored by co-injection with lbx2 mRNA. Our results suggest that the key noncanonical Wnt signaling components Wnt5, Dvl, and RhoA are downstream effectors involved in the regulative roles of lbx2 in CE movement and hypaxial myogenesis during zebrafish embryogenesis.  相似文献   

17.
Stress‐induced Sapk/Jnk signaling is involved in cell survival and apoptosis. Recent studies have increased our understanding of the physiological roles of Jnk signaling in embryonic development. However, still unclear is the precise function of Jnk signaling during gastrulation, a critical step in the establishment of the vertebrate body plan. Here we use morpholino‐mediated knockdown of the zebrafish orthologs of the Jnk activators Mkk4 and Mkk7 to examine the effect of Jnk signaling abrogation on early vertebrate embryogenesis. Depletion of zebrafish Mkk4b led to abnormal convergent extension (CE) during gastrulation, whereas Mkk7 morphants exhibited defective somitogenesis. Surprisingly, Mkk4b morphants displayed marked upregulation of wnt11, which is the triggering ligand of CE and stimulates Jnk activation via the non‐canonical Wnt pathway. Conversely, ectopic activation of Jnk signaling by overexpression of an active form of Mkk4b led to wnt11 downregulation. Mosaic lineage tracing studies revealed that Mkk4b‐Jnk signaling suppressed wnt11 expression in a non‐cell‐autonomous manner. These findings provide the first evidence that wnt11 itself is a downstream target of the Jnk cascade in the non‐canonical Wnt pathway. Our work demonstrates that Jnk activation is indispensable for multiple steps during vertebrate body plan formation. Furthermore, non‐canonical Wnt signaling may coordinate vertebrate CE movements by triggering Jnk activation that represses the expression of the CE‐triggering ligand wnt11. J. Cell. Biochem. 110: 1022–1037, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Studies implicate an important role for the mixed lineage leukemia (Mll) gene in hematopoiesis, mainly through maintaining Hox gene expression. However, the mechanisms underlying Mll-mediated hematopoiesis during embryogenesis remain largely unclear. Here, we investigate the role of mll during zebrafish embryogenesis, particularly hematopoiesis. Mll depletion caused severe defects in hematopoiesis as indicated by a lack of blood flow and mature blood cells as well as a significant reduction in expression of hematopoietic progenitor and mature blood cell markers. Furthermore, mll depletion prevented the differentiation of hematopoietic progenitors. In addition, we identified the N-terminal mini-peptide of Mll that acted as a dominant negative form to disrupt normal function of mll during embryogenesis. As expected, mll knockdown altered the expression of a subset of Hox genes. However, overexpression of these down-regulated Hox genes only partially rescued the blood deficiency, suggesting that mll may target additional genes to regulate hematopoiesis. In the mll morphants, microarray analysis revealed a dramatic up-regulation of gadd45αa. Multiple assays indicate that mll inhibited gadd45αa expression and that overexpression of gadd45αa mRNA led to a phenotype similar to the one seen in the mll morphants. Taken together, these findings demonstrate that zebrafish mll plays essential roles in hematopoiesis and that gadd45αa may serve as a potential downstream target for mediating the function of mll in hematopoiesis.  相似文献   

19.
scube1 (signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF domain-containing protein 1), the founding member of a novel secreted and cell surface SCUBE protein family, is expressed predominantly in various developing tissues in mice. However, its function in primitive hematopoiesis remains unknown. In this study, we identified and characterized zebrafish scube1 and analyzed its function by injecting antisense morpholino-oligonucleotide into embryos. Whole-mount in situ hybridization revealed that zebrafish scube1 mRNA is maternally expressed and widely distributed during early embryonic development. Knockdown of scube1 by morpholino-oligonucleotide down-regulated the expression of marker genes associated with early primitive hematopoietic precursors (scl) and erythroid (gata1 and hbbe1), as well as early (pu.1) and late (mpo and l-plastin) myelomonocytic lineages. However, the expression of an early endothelial marker fli1a and vascular morphogenesis appeared normal in scube1 morphants. Overexpression of bone morphogenetic protein (bmp) rescued the expression of scl in the posterior lateral mesoderm during early primitive hematopoiesis in scube1 morphants. Biochemical and molecular analysis revealed that Scube1 could be a BMP co-receptor to augment BMP signaling. Our results suggest that scube1 is critical for and functions at the top of the regulatory hierarchy of primitive hematopoiesis by modulating BMP activity during zebrafish embryogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号