首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphibians may be critically challenged by aquatic contaminants during their embryonic development. Many classes of compounds, including organophosphorus pesticides, are able to cause oxidative stress that affects the delicate cellular redox balance regulating tissue modeling. We determined the progression of antioxidant defenses during the embryonic development of the South American common toad, Bufo arenarum. Superoxide dismutase (SOD) and catalase (CAT) activities were high in the unfertilized eggs, and remained constant during the first stages of development. SOD showed a significant increase when the gills were completely active and opercular folds began to form. Reductase (GR) activity was low in the oocytes and increased significantly when gills and mouth were entirely developed and the embryos presented a higher exposure to pro-oxidant conditions suggesting an environmental control. Reduced glutathione (GSH) content was also initially low, and rose continuously pointing out an increasing participation of GSH-related enzymes in the control of oxidative stress. GSH peroxidases and GSH-S-transferases showed relatively high and constant activities, probably related to lipid peroxide control. B. arenarum embryos have plenty of yolk platelets containing lipids, which provide the energy and are actively transferred to the newly synthesized membranes during the early embryonic development. Exposure to the pro-oxidant pesticide malathion during 48 h did not significantly affect the activity of antioxidant enzymes in early embryos, but decreased the activities of CAT, GR, and the pool of GSH in larvae. Previous work indicated that lipid peroxide levels were kept low in malathion-exposed larvae, thus we conclude that oxidative stress is overcome by the antioxidant defenses. The increase in the antioxidant metabolism observed in the posthatching phase of development of B. arenarum embryo, thus constitutes a defense against natural and human-generated pro-oxidants present in the aquatic environment.  相似文献   

2.
Glutathione plays a central role in the maintenance of cellular antioxidant defense. The alterations in the glutathione and associated recyclic enzymes caused by both exercise training and ethanol are well documented; however, their interactive effects with age are not well understood. Therefore, the influence of ageing and the interactive effects of exercise training and ethanol on the myocardial glutathione system in 3 months and 18 months old rats were examined. The results showed a significant (p<0.01) reduction in GSH content, Se and non-Se GSH-Px, GR and GST activities in the myocardium of rat with age. A significant increase (p<0.05) in the activities of these enzymes was observed in both age groups of rats in response to exercise training. This exercise-induced elevation of Se and non-Se GSH-Px and GR activities was more pronounced in the 18 months old rats when compared to 3 months old rats. Ethanol consumption significantly (p<0.05) reduced the GSH content, Se and non-Se GSH-Px and GR activities in both age groups of rats. In contrast, ethanol consumption significantly (p<0.05) increased the activity of GST. The combined action of exercise plus ethanol significantly (p<0.05) elevated the GSH content, Se and non-Se GSH-Px, GR and GST activities when compared to the ethanol treated rats in both age groups, indicating the suppression of ethanol-induced oxidative stress by exercise training. In conclusion, there was a compensatory myocardial response lessening ethanol-induced oxidative stress by exercise training, which seemed to result from the higher activity of glutathione recycling and utilizing enzymes, which may be critical for preventing chronic oxidative damage to the myocardium during ageing and even due to ethanol consumption.  相似文献   

3.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

4.
Glutathione plays a central role in the maintenance of cellular antioxidant defense. The alterations in the glutathione and associated recyclic enzymes caused by both exercise training and ethanol are well documented; however, their interactive effects with age are not well understood. Therefore, the influence of ageing and the interactive effects of exercise training and ethanol on the myocardial glutathione system in 3 months and 18 months old rats were examined. The results showed a significant (p<0.01) reduction in GSH content, Se and non-Se GSH-Px, GR and GST activities in the myocardium of rat with age. A significant increase (p<0.05) in the activities of these enzymes was observed in both age groups of rats in response to exercise training. This exercise-induced elevation of Se and non-Se GSH-Px and GR activities was more pronounced in the 18 months old rats when compared to 3 months old rats. Ethanol consumption significantly (p<0.05) reduced the GSH content, Se and non-Se GSH-Px and GR activities in both age groups of rats. In contrast, ethanol consumption significantly (p<0.05) increased the activity of GST. The combined action of exercise plus ethanol significantly (p<0.05) elevated the GSH content, Se and non-Se GSH-Px, GR and GST activities when compared to the ethanol treated rats in both age groups, indicating the suppression of ethanol-induced oxidative stress by exercise training. In conclusion, there was a compensatory myocardial response lessening ethanol-induced oxidative stress by exercise training, which seemed to result from the higher activity of glutathione recycling and utilizing enzymes, which may be critical for preventing chronic oxidative damage to the myocardium during ageing and even due to ethanol consumption.  相似文献   

5.
The current study was carried out to investigate the potential role of 4,5 dihydroxy benzene 1,3 disulfonic acid di sodium salt (Tiron) and glutathione (GSH) either individually or in combination against aluminum (Al)-induced toxicity in Wistar rats. Animals were exposed to aluminum chloride at a dose of 172.5mg/kg/d orally for 10 weeks. Tiron and GSH were administered at a dose of 471-mg/kg/d i.p. and 100mg/kg/d orally, respectively, for 7 consecutive days. Tiron is a diphenolic chelating compound which forms water soluble complexes with a large number of metal ions. Induction of oxidative stress was recorded in brain and serum after Al exposure. Significant decrease was recorded in reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GP(x)), catalase (CAT), superoxide dismutase (SOD), acetyl cholinesterase (AChE) and an increase was observed in thiobarbituric acid reacting substance (TBARS) and glutathione-S-transferase (GST) in brain and serum. Most of the above parameters responded positively to individual therapy with Tiron, but more pronounced beneficial effects on the above-described parameters were observed when Tiron was administered in combination with GSH. Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) studies also showed significantly high concentration of Al in brain and blood. Tiron was slightly more effective then GSH in reducing the concentration of Al from the brain and blood, however, no further improvement was recorded when Tiron was administered in combination with GSH in reducing the concentration of Al.  相似文献   

6.
Aluminum (Al)-induced pro-oxidant activity and the protective role of exogenous melatonin, as well as the mRNA levels of some antioxidant enzymes, were determined in the hippocampi of rats following administration of Al and/or melatonin. Two groups of male rats were intraperitoneally injected with Al (as Al lactate) or melatonin only, at doses of 7 and 10 mg/kg/day, respectively, for 11 weeks. During this period, a third group of animals received Al (7 mg/kg/day) plus melatonin (10 mg/kg/day). At the end of the treatment, hippocampus was removed and processed to examine the following oxidative stress markers: glutathione transferase (GST), reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), thiobarbituric acid reactive substances (TBARS), as well as protein content. Gene expression of Cu-ZnSOD, MnSOD, GPx, and CAT was evaluated by real-time RT-PCR. On the other hand, Al, Fe, Mn, Cu, and Zn concentrations in hippocampus were also determined. The results show that Al exposure promotes oxidative stress in the rat hippocampus, with an increase in Al concentrations. The biochemical changes observed in this tissue indicate that Al acts as pro-oxidant agent, while melatonin exerts antioxidant action by increasing the mRNA levels of the antioxidant enzymes evaluated. The protective effects of melatonin, together with its low toxicity and its capacity to increase mRNA levels of antioxidant enzymes, suggest that this hormone might be administered as a potential supplement in the treatment of neurological disorders in which oxidative stress is involved.  相似文献   

7.
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.  相似文献   

8.
Oxidative stress is an imbalance between pro-oxidants and antioxidants in favor of the pro-oxidants, leading to different responses depending on the level of pro-oxidants achieved and the duration of exposure. In this article, we discuss the cytoprotective or suicidal signaling mechanisms associated with oxidative stress by addressing: (i) the development of an acute and mild pro-oxidant state by thyroid hormone administration eliciting the redox upregulation of the expression of proteins affording cell protection as a preconditioning strategy against ischemia-reperfusion liver injury; and (ii) the role of prolonged and severe oxidative stress and insulin resistance as determinant factors in the pathogenesis of non-alcoholic fatty liver disease associated with obesity.  相似文献   

9.
Hypobaric hypoxia induces oxidative stress in rat brain   总被引:7,自引:0,他引:7  
High altitude exposure results in decreased partial pressure of oxygen and an increased formation of reactive oxygen and nitrogen species (RONS), which causes oxidative damage to lipids, proteins and DNA. Exposure to high altitude appears to decrease the activity and effectiveness of antioxidant enzyme system. The antioxidant system is very less in brain tissue and is very much susceptible to hypoxic stress. The aim of the present study was to investigate the time dependent and region specific changes in cortex, hippocampus and striatum on oxidative stress markers on chronic exposure to hypobaric hypoxia. The rats were exposed to simulated high altitude equivalent to 6100 m in animal decompression chamber for 3 and 7 days. Results indicate an increase in oxidative stress as seen by increase in free radical production, nitric oxide level, lipid peroxidation and lactate dehydrogenase levels. The magnitude of increase in oxidative stress was more in 7 days exposure group as compared to 3 days exposure group. The antioxidant defence system such as reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and reduced/oxidized glutathione (GSH/GSSG) levels were significantly decreased in all the three regions. The observation suggests that the hippocampus is more susceptible to hypoxia than the cortex and striatum. It may be concluded that hypoxia differentially affects the antioxidant status in the cortex, hippocampus and striatum.  相似文献   

10.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

11.
We studied the effect of glycine supplementation on lipid peroxidation and antioxidants in the erythrocyte membrane, plasma and hepatocytes of rats with alcohol-induced hepatotoxicity. Administering ethanol (20%) for 60 days to male Wistar rats resulted in significantly elevated levels of erythrocyte membrane, plasma and hepatocyte thiobarbituric acid reactive substances (TBARS) as compared with those of the experimental control rats. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GR) were also observed on alcohol supplementation as compared with those of the experimental control rats. Glycine was administered at a dose of 0.6 g kg(-1) body weight to rats with alcohol-induced liver injury, which significantly decreased the levels of TBARS and significantly elevated the activities of SOD, CAT, GSH, GPx and GR in the erythrocyte membrane, plasma and hepatocytes as compared to that of untreated alcohol supplemented rats. Thus, our data indicate that supplementation with glycine offers protection against free radical-mediated oxidative stress in the erythrocyte membrane, plasma and hepatocytes of animals with alcohol-induced liver injury.  相似文献   

12.
The cellular roles of glutathione reductase (GR) in the reactive oxygen species (ROS)-induced apoptosis were studied using the HepG2 cells transfected with GR. The overexpression of GR caused a marked enhancement in reduced and oxidized glutathione (GSH/GSSG) ratio, and significantly decreased ROS levels in the stable transfectants. Hydrogen peroxide (H2O2), under the optimal condition for apoptosis, significantly decreased cellular viability and total GSH content, and rather increased ROS level, apoptotic percentage and caspase-3 activity in the mock-transfected cells. However, hydrogen peroxide could not largely generate these apoptotic changes in cellular viability, ROS level, apoptotic percentage, caspase-3 activity and total GSH content in the cells overexpressing GR. Taken together, GR may play a protective role against oxidative stress.  相似文献   

13.
The effect of exogenous application of 28-Homobrassinolide (HBR) on radish (Raphanus sativus L.) seedlings under zinc (Zn2+) stress on glutathione (GSH) production, consumption and changes in redox status was investigated. Zinc toxicity resulted in oxidative burst as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. These stress indices were significantly decreased by HBR supplementation. Under Zn2+ stress, GSH pool was decreased, while the contribution of oxidized glutathione (GSSG) to total GSH increased (GSSH/GSH ratio), this translated into significant reduction of GSH redox homeostasis. In addition, an increase of phytochelatins (PCs) was observed. In radish seedlings under Zn2+ stress, the activities of gamma-glutamylcysteine synthetase (γ-ECS), glutathione synthetase (GS), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and cysteine (Cys) levels increased but the activity of glutathione reductase (GR) decreased. However, application of HBR increased the GSH pool and maintained their redox ratio by increasing the enzyme activities of GSH biosynthesis (γ-ECS and GS) and GSH metabolism (GR, GPX and GST). The results of present study are novel in being the first to demonstrate that exogenous application of HBR modulates the GSH synthesis, metabolism and redox homeostasis to confer resistance against Zn2+ induced oxidative stress.  相似文献   

14.
We investigated whether endogenously or exogenously produced nitric oxide (NO) can inhibit cellular glutathione reductase (GR) via the formation of S-nitrosothiols to decrease cellular glutathione (GSH) and increase oxidative stress in RAW 264.7 cells. The specificity of this inhibition was demonstrated by addition of a NO-synthase inhibitor, and met- or oxyhemoglobin. Using isolated GR we found that only certain NO donors inhibit this enzyme via S-nitrosothiol. Furthermore, we found that cellular GSH decrease is paralleled by an increase of superoxide anion production. Our results show that the GR enzyme is a potential target of S-nitrosothiols to decrease cellular GSH levels and to induce oxidative stress in macrophages.  相似文献   

15.
Lipid peroxide‐derived reactive carbonyl species (RCS), generated downstream of reactive oxygen species (ROS), are critical damage‐inducing species in plant aluminum (Al) toxicity. In mammals, RCS are scavenged primarily by glutathione (reduced form of glutathione, GSH), but in plant Al stress, contribution of GSH to RCS detoxification has not been evaluated. In this study, Arabidopsis plants overexpressing the gene AtGR1 (accession code At3g24170), encoding glutathione reductase (GR), were generated, and their performance under Al stress was examined. These transgenic plants (GR‐OE plants) showed higher GSH levels and GSH/GSSG (oxidized form of GSH) ratio, and an improved Al tolerance as they suffered less inhibition of root growth than wild‐type under Al stress. Exogenous application of 4‐hydroxy‐2‐nonenal, an RCS responsible for Al toxicity in roots, markedly inhibited root growth in wild‐type plants. GR‐OE plants suffered significantly smaller inhibition, indicating that the enhanced GSH level increased the capacity of RCS detoxification. The generation of H2O2 due to Al stress in GR‐OE plants was lower by 26% than in wild‐type. Levels of various RCS, such as malondialdehyde, butyraldehyde, phenylacetaldehyde, (E)‐2‐heptenal and n‐octanal, were suppressed by more than 50%. These results indicate that high levels of GSH and GSH/GSSG ratio by GR overexpression contributed to the suppression of not only ROS, but also RCS. Thus, the maintenance of GSH level by overexpressing GR reinforces dual detoxification functions in plants and is an efficient approach to enhance Al tolerance.  相似文献   

16.
Paraquat (PQ), a widely used herbicide is a well-known free radical producing agent. The mechanistic pathways of PQ neurotoxicity were examined by assessing oxidative/nitrosative stress markers. Focus was on the role of glutathione (GSH) cycle and to examine whether the pre-treatment with enzyme glutathione reductase (GR) could protect the vulnerable brain regions (VBRs) against harmful oxidative effect of PQ. The study was conducted on Wistar rats, randomly divided in five groups: intact-control group, (n=8) and four experimental groups (n=24). All tested compounds were administered intrastriatally (i.s.) in one single dose. The following parameters of oxidative status were measured in the striatum, hippocampus and cortex, at 30min, 24h and 7days post treatment: superoxide anion radical (O(2)(-)), nitrate (NO(3)(-)), malondialdehyde (MDA), superoxide dismutase (SOD), total GSH (tGSH) and its oxidized, disulfide form (GSSG) and glutathione peroxidase (GPx). Results obtained from the intact and the sham operated groups were not statistically different, confirming that invasive i.s. route of administration would not influence the reliability of results. Also, similar pattern of changes were observed between ipsi- and contra- lateral side of examined VBRs, indicating rapid spatial spreading of oxidative stress. Mortality of the animals (10%), within 24h, along with symptoms of Parkinsonism, after awakening from anesthesia for 2-3h, were observed in the PQ group, only. Increased levels of O(2)(-), NO(3)(-) and MDA, increased ratio of GSSG/GSH and considerably high activity of GPx were measured at 30min after the treatment. Cytotoxic effect of PQ was documented by drastic drop of all measured parameters and extremely high peak of the ratio GSSG/GSH at 24th hrs after the PQ i.s. injection. In the GR+PQ group, markedly low activity of GPx and low content of NO(3)(-) (in striatum and cortex) were measured during whole experiment, while increase value was observed only for O(2)(-), at 7th days. We concluded that oxidative/nitrosative stress and excitotoxicity are the most important events since the early stage of PQ induced neurotoxicity. Based on the ratio GSSG/GSH, the oxidation of GSH to GSSG is probably dominant way of GHS depletion and main reason for reduced antioxidative defense against PQ harmful oxidative effect. The GR pre-treatment resulted in the absence of Parkinson's disease-like symptoms and mortality of the rats. Additionally, oxidative/nitrosative stress did not developed, as well as almost diminished metabolism of the VBRs at 24th hours (as has been documented in the PQ group) did not occurred in the GR+PQ, suggesting a neuroprotective role for the GR in PQ induced neurotoxicity.  相似文献   

17.
The production of reactive oxygen species (ROS) is considered to be a major factor in oxidative cell injury. The antioxidant activity or the inhibition of the generation of free radicals is important in providing protection against such hepatic damage. Silymarin, derived from the milk thistle plant, Silybium marianum, has been used in traditional medicine as a remedy for diseases of the liver and biliary tract. In the present study, the effect of hepatoprotective drug silymarin on body weight and biochemical parameters, particularly, antioxidant status of ethanol-exposed rats was studied and its efficacy was compared with the potent antioxidant, ascorbic acid as well as capacity of hepatic regeneration during abstention. Ethanol, at a dose of 1.6 g/kg body wt/day for 4 wks affected body weight in 16-18 week-old male albino rats (Wistar strain weighing 200-220 g). Thiobarbituric acid reactive substance (TBARS) level, superoxide dismutase (SOD), and glutathione-s-transferase (GST) activities were significantly increased, whereas GSH content, and catalase, glutathione reductase (GR) and GPx (glutathione peroxidase) activities significantly reduced, on ethanol exposure. These changes were reversed by silybin and ascorbic acid treatment. It was also observed that abstinence from ethanol might help in hepatic regeneration. Silybin showed a significant hepatoprotective activity, but activity was less than that of ascorbic acid. Furthermore, preventive measures were more effective than curative treatment.  相似文献   

18.
The molecular basis of the toxic properties of phenoxy herbicides in humans and animals has been insufficiently studied. In this study, damage parameters [levels of reduced glutathione (GSH) and total glutathione; activity of glutathione reductase (GR); activities of catalase (CAT) and superoxide dismutase (SOD); levels of adenine nucleotides and adenine energy charge (AEC)] were measured in human erythrocytes exposed in vitro to 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and its metabolite 2,4,5-trichlorophenol (2,4,5-TCP). Both 2,4,5-T and 2,4,5-TCP decreased the level of reduced glutathione (GSH) in erythrocytes in comparison to the control, but did not significantly change the total glutathione (2GSH + GSSG). This suggests that GSH concentration decreases concomitantly with an increase in oxidized glutathione (GSSG). 2,4,5-TCP at 100 ppm significantly decreased catalase and SOD activities. 2,4,5-T and 2,4,5-TCP did not significantly change the activity of glutathione reductase. 2,4,5-TCP decreased the level of ATP and increased the content of ADP and AMP, indicating a fall in AEC. 2,4,5-T and 2,4,5-TCP significantly changed the erythrocyte morphology. All these data are evidence of oxidative stress in erythrocytes incubated with 2,4,5-T and 2,4,5-TCP; the stress appears to be more intense in the case of 2,4,5-TCP.  相似文献   

19.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

20.
We have analyzed the anti- or pro-oxidant effects of the flavonoid quercetin (QU) by evaluating, in U937 cell line, hydrogen peroxide (H(2)O(2)), superoxide anion reduced glutathione (GSH) content, mitochondrial membrane potential, DNA content, phosphatidylserine exposure on the outer face of the plasma membrane and cell viability. Polychromatic flow cytometry was used to evaluate in the same cells several functional parameters. For short periods of treatment QU exerted an anti-oxidant effect (decrease in H(2)O(2) levels), whereas for long periods it showed a pro-oxidant activity (increase in ). In these conditions, GSH content was reduced, and this correlated with a lack of anti-oxidant activity of QU, which in turn could be correlated with proapoptotic activity of this molecule. Thus, QU can exert different effects (anti-/prooxidant) depending on exposure times and oxidative balance, and in particular on stores of GSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号