首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For more than 30 years it was believed that globin gene domains included only genes encoding globin chains. Here we show that in chickens, the domain of α-globin genes also harbor the non-globin gene TMEM8. It was relocated to the vicinity of the α-globin cluster due to inversion of an ∼170-kb genomic fragment. Although in humans TMEM8 is preferentially expressed in resting T-lymphocytes, in chickens it acquired an erythroid-specific expression profile and is upregulated upon terminal differentiation of erythroblasts. This correlates with the presence of erythroid-specific regulatory elements in the body of chicken TMEM8, which interact with regulatory elements of the α-globin genes. Surprisingly, TMEM8 is not simply recruited to the α-globin gene domain active chromatin hub. An alternative chromatin hub is assembled, which includes some of the regulatory elements essential for the activation of globin gene expression. These regulatory elements should thus shuttle between two different chromatin hubs.  相似文献   

2.
3.
4.
5.
The duck beta-globin gene cluster contains a single enhancer element   总被引:1,自引:0,他引:1  
An erythroid-specific enhancer was previously identified in the 3'-flanking region of the beta adult gene in chicken and duck, by transfection into AEV transformed chicken erythroblasts. Here we show that the duck enhancer is equally active in erythroid human K562 cells, presenting an embryonic/fetal program of globin gene expression. Furthermore, no other enhancer was found within the 20 kb of DNA including four beta-like globin genes as well as a 1.5 kb upstream and a 3 kb downstream sequence.  相似文献   

6.
7.
Current models suggest that tissue-specific genes are arranged in discrete, independently controlled segments of chromatin referred to as regulatory domains. Transition from a closed to open chromatin structure may be an important step in the regulation of gene expression. To determine whether the human alpha-globin cluster, like the beta-globin cluster, lies within a discrete, erythroid-specific domain, we have examined the long-range genomic organization and chromatin structure around this region. The alpha genes lie adjacent to at least four widely expressed genes. The major alpha-globin regulatory element lies 40 kb away from the cluster within an intron of one of these genes. Therefore, unlike the beta cluster, cis-acting sequences controlling alpha gene expression are dispersed within a region of chromatin that is open in both erythroid and nonerythroid cells. This implies a difference in the hierarchical control of alpha- and beta-globin expression.  相似文献   

8.
9.
10.
11.
Increasing fetal hemoglobin (HbF) levels in adult humans remains an active area in hematologic research. Here we explored erythroid-specific LIN28A expression for its effect in regulating gamma-globin gene expression and HbF levels in cultured adult erythroblasts. For this purpose, lentiviral transduction vectors were produced with LIN28A expression driven by erythroid-specific gene promoter regions of the human KLF1 or SPTA1 genes. Transgene expression of LIN28A with a linked puromycin resistance marker was restricted to the erythroid lineage as demonstrated by selective survival of erythroid colonies (greater than 95% of all colonies). Erythroblast LIN28A over-expression (LIN28A-OE) did not significantly affect proliferation or inhibit differentiation. Greater than 70% suppression of total let-7 microRNA levels was confirmed in LIN28A-OE cells. Increases in gamma-globin mRNA and protein expression with HbF levels reaching 30–40% were achieved. These data suggest that erythroblast targeting of LIN28A expression is sufficient for increasing fetal hemoglobin expression in adult human erythroblasts.  相似文献   

12.
13.
We have ligated two cosmids through an oligonucleotide linker to produce a single fragment spanning 70 kb of the human alpha-globin cluster, in which the alpha-like globin genes (zeta 2, alpha 2 and alpha 1), their regulatory element (HS-40) and erythroid-specific DNase I hypersensitive sites accurately retain their normal genomic organization. The zeta (embryonic) and alpha (embryonic, fetal and adult) globin genes were expressed in all 17 transgenic embryos. Similarly, all fetal and adult mice from seven transgenic lines that contained one or more copies of the fragment, produced up to 66% of the level of endogenous mouse alpha-globin mRNA. However, as for smaller constructs containing these elements, human alpha-globin expression was not copy number dependent and decreased by 1.5-9.0 fold during development. These findings suggest that either it is not possible to obtain full regulation of human alpha-globin expression in transgenic mice or, more likely, that additional alpha-globin regulatory elements lie beyond the 70 kb segment of DNA analysed.  相似文献   

14.
15.
S Ren  J Li    G F Atweh 《Nucleic acids research》1996,24(2):342-347
Although the human alpha-globin and beta-globin genes are co-regulated in adult life, they achieve the same end by very different mechanisms. For example, a transfected beta-globin gene is expressed in an inducible manner in mouse erythroleukemia (MEL) cells while a transfected alpha-globin gene is constitutively expressed at a high level in induced and uninduced MEL cells. Interestingly, when the alpha-globin gene is transferred into MEL cells as part of human chromosome 16, it is appropriately expressed in an inducible manner. We explored the basis for the lack of erythroid-responsiveness of the proximal regulatory elements of the human alpha-globin gene. Since the alpha-globin gene is the only functional human globin gene that lacks CACCC and GATA-1 motifs, we asked whether their addition to the alpha-globin promoter would make the gene erythroid-responsive in MEL cells. The addition of each of these binding sites to the alpha-globin promoter separately did not result in inducibility in MEL cells. However, when both sites were added together, the alpha-globin gene became inducible in MEL cells. This suggests that erythroid non-responsiveness of the alpha-globin gene results from the lack of erythroid binding sites and is not necessarily a function of the constitutively active, GC rich promoter.  相似文献   

16.
Chicken erythroblasts can be transformed by the avian retrovirus, avian erythroblastosis virus (AEV). Earlier studies have shown that the mechanism of transformation appears to involve a “block” in differentiation, in that when erythroblasts are transformed by a temperature-sensitive mutant of ts34 AEV and incubated at the nonpermissive temperature, the cells start to differentiate and produce hemoglobin. We have decided to use this system to isolate pure populations of chicken erythroblasts and raise monoclonal antibodies against their cell surface proteins. Three monoclonal antibodies were isolated and tested for their ability to bind to various hematopoietic cell types; two were shown to be erythroid-specific, whereas the other antibody bound to proliferating cells but not to erythrocytes or granulocytes. Of the erythroid-specific antibodies, one precipitated a 94,000 molecular weight protein, whereas the other precipitated a 11,000 molecular weight protein that was tentatively identified as hemoglobin. The use of this system and approach to identify and evaluate changes that occur during the differentiation is discussed.  相似文献   

17.
Here, we show that in the chicken genome, the domain of alpha-globin genes is preceded by a CpG island of which the downstream part ( approximately 0.65 kbp) is heavily methylated in lymphoid cells; it is either non-methylated or undermethylated in erythroid cells. Recombinant plasmids were constructed with the corresponding DNA fragment (called "uCpG") placed upstream to a reporter CAT gene expressed from the promoter of the alpha(D) chicken globin gene. Selective methylation of CpG dinucleotides within the uCpG fragment suppressed fivefold the expression of the CAT gene, when neither this gene itself nor the alpha(D) promoter were methylated. Methylation of CpG dinucleotides within the alpha(D) gene promoter did not modify the suppression effect exerted by methylated uCpG. We interpret these results within the frame of the hypothesis postulating, that methylation of the upstream CpG island of the chicken alpha-globin gene domain may play an essential role in silencing the alpha-globin genes in non-erythroid cells.  相似文献   

18.
The alpha-globin gene is expressed at a constitutively high level upon gene transfer into both erythroid and nonerythroid cells. The beta-globin gene, on the other hand, is dependent on the presence of a linked viral enhancer for its efficient expression upon transfer into heterologous cells. In this report, we describe a novel regulatory element within the structural alpha-globin gene which can activate its own promoter to result in a high level of expression in both erythroid and non-erythroid cells. This regulatory element does not appear to have the properties of a classical enhancer. While this element exerts a positive effect on its own promoter, we have demonstrated in a previous study that the same element exerts a negative effect on heterologous genes such as the beta- and gamma-globin genes. In this study, we localize this element to a 259 nucleotide fragment immediately downstream from the translation initiation codon which is partially overlapped by a DNase I hypersensitive domain only in erythroid cells. We propose that this element may activate the alpha-globin gene promoter in all cell types in vivo as it does in vitro. The specificity of erythroid expression of the alpha-globin gene in vivo is probably determined by a "permissive" chromatin configuration in erythroid cells and a "nonpermissive" configuration in non-erythroid cells.  相似文献   

19.
J Stalder 《Nucleic acids research》1988,16(23):11027-11045
Insertion of 1.5 kb of the 5' flanking region of the adult alpha-globin gene of X. laevis in front of the CAT structural gene promotes synthesis of CAT in transiently transfected X. laevis kidney cells. Fusion of transiently transfected kidney cells with erythroblasts isolated from anaemic frogs stimulates CAT expression 3-4 fold in the resulting transient heterokaryons. The stimulation is specific for the alpha-globin promoter and is obtained after fusion with erythroid cells but not with hepatocytes or kidney cells. Stably transfected kidney cells express drastically reduced CAT activity as compared with transiently transfected cells. Nevertheless, fusion of stably transfected kidney cells with erythroblasts leads to a 10-17 fold stimulation of CAT expression. The experiments suggest that erythroid specific transacting factors stimulate expression of CAT controlled by the adult alpha-globin promoter.  相似文献   

20.
The major positive regulatory activity of the human alpha-globin gene complex has been localized to an element associated with a strong erythroid-specific DNase I hypersensitive site (HS -40) located 40 kb upstream of the zeta 2-globin mRNA cap site. Footprint and gel shift analyses of the element have demonstrated the presence of four binding sites for the nuclear factor GATA-1 and two sites corresponding to the AP-1 consensus binding sequence. This region resembles one of the major elements of the beta-globin locus control region in its constitution and characteristics; this together with evidence from expression studies suggests that HS -40 is a primary element controlling alpha-globin gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号