首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe the first NAT homologues in viruses, archaea, protists, many fungi and invertebrates, providing complete annotations in line with the consensus nomenclature. Contrary to the NAT genes of vertebrates, introns are commonly found within the homologous coding regions of lower eukaryotes. The NATs of fungi and higher animals are distinctly monophyletic, but evidence supports a mixed phylogeny of NATs among bacteria, protists and possibly some invertebrates.  相似文献   

2.
Rice planthoppers are notorious plant sap‐feeding pests which cause serious damage. While several microbes in rice planthoppers have been broadly characterized, the abundance and diversity of bacteria and fungi in field planthoppers are largely unknown. This study investigated the bacterial and fungal community compositions of Chinese wild rice planthoppers Laodelphax striatellus and Sogatella furcifera using parallel 16S rRNA gene amplicon and internal transcribed space region sequencing. The bacteria varied significantly between the species and were partitioned significantly by sex, tissues and host environments in each species. The majority of bacteria were affiliated with the genera Wolbachia, Cardinium, Rickettsia and Pantoea. The abundance of Wolbachia was negatively correlated with that of Cardinium in both planthopper species. Compared with bacteria, the abundance and diversity of fungi did not differ between sexes but both were enriched in the gut. The bacterial community as a whole showed no significant correlation with the fungal community. The majority of fungi were related to Sarocladium, Alternaria, Malassezia, Aspergillus and Curvularia. A phylogenetic analysis revealed that these fungi were closely related to botanic symbionts or pathogens. Our results provide novel insights into the bacteria and fungi of rice planthoppers.  相似文献   

3.
N-Acetyltransferase from Chryseobacterium sp. strain 5-3B is an acetyl coenzyme A (acetyl-CoA)-dependent enzyme that catalyzes the enantioselective transfer of an acetyl group from acetyl-CoA to the amino group of l-2-phenylglycine to produce (2S)-2-acetylamino-2-phenylacetic acid. We purified the enzyme from strain 5-3B and deduced the N-terminal amino acid sequence. The gene, designated natA, was cloned with two other hypothetical protein genes; the three genes probably form a 2.5-kb operon. The deduced amino acid sequence of NatA showed high levels of identity to sequences of putative N-acetyltransferases of Chryseobacterium spp. but not to other known arylamine and arylalkylamine N-acetyltransferases. Phylogenetic analysis indicated that NatA forms a distinct lineage from known N-acetyltransferases. We heterologously expressed recombinant NatA (rNatA) in Escherichia coli and purified it. rNatA showed high activity for l-2-phenylglycine and its chloro- and hydroxyl-derivatives. The Km and Vmax values for l-2-phenylglycine were 0.145 ± 0.026 mM and 43.6 ± 2.39 μmol · min−1 · mg protein−1, respectively. The enzyme showed low activity for 5-aminosalicylic acid and 5-hydroxytryptamine, which are reported as good substrates of a known arylamine N-acetyltransferase and an arylalkylamine N-acetyltransferase. rNatA had a comparatively broad acyl donor specificity, transferring acyl groups to l-2-phenylglycine and producing the corresponding 2-acetylamino-2-phenylacetic acids (relative activity with acetyl donors acetyl-CoA, propanoyl-CoA, butanoyl-CoA, pentanoyl-CoA, and hexanoyl-CoA, 100:108:122:10:<1).  相似文献   

4.
Organic compounds and mineral nitrogen (N) usually increase nitrous oxide (N2O) emissions. Vinasse, a by‐product of bio‐ethanol production that is rich in carbon, nitrogen, and potassium, is recycled in sugarcane fields as a bio‐fertilizer. Vinasse can contribute significantly to N2O emissions when applied with N in sugarcane plantations, a common practice. However, the biological processes involved in N2O emissions under this management practice are unknown. This study investigated the roles of nitrification and denitrification in N2O emissions from straw‐covered soils amended with different vinasses (CV: concentrated and V: nonconcentrated) before or at the same time as mineral fertilizers at different time points of the sugarcane cycle in two seasons. N2O emissions were evaluated for 90 days, the period that occurs most of the N2O emission from fertilizers; the microbial genes encoding enzymes involved in N2O production (archaeal and bacterial amoA, fungal and bacterial nirK, and bacterial nirS and nosZ), total bacteria, and total fungi were quantified by real‐time PCR. The application of CV and V in conjunction with mineral N resulted in higher N2O emissions than the application of N fertilizer alone. The strategy of vinasse application 30 days before mineral N reduced N2O emissions by 65% for CV, but not for V. Independent of rainy or dry season, the microbial processes were nitrification by ammonia‐oxidizing bacteria (AOB) and archaea and denitrification by bacteria and fungi. The contributions of each process differed and depended on soil moisture, soil pH, and N sources. We concluded that amoA‐AOB was the most important gene related to N2O emissions, which indicates that nitrification by AOB is the main microbial‐driven process linked to N2O emissions in tropical soil. Interestingly, fungal nirK was also significantly correlated with N2O emissions, suggesting that denitrification by fungi contributes to N2O emission in soils receiving straw and vinasse application.  相似文献   

5.
Arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that biotransform arylamine drugs. The Bacillus anthracis (BACAN)NAT1 enzyme affords increased resistance to the antibiotic sulfamethoxazole through its acetylation. We report the structure of (BACAN)NAT1. Unexpectedly, endogenous coenzymeA was present in the active site. The structure suggests that, contrary to the other prokaryotic NATs, (BACAN)NAT1 possesses a 14-residue insertion equivalent to the “mammalian insertion”, a structural feature considered unique to mammalian NATs. Moreover, (BACAN)NAT1 structure shows marked differences in the mode of binding and location of coenzymeA when compared to the other NATs. This suggests that the mechanisms of cofactor recognition by NATs is more diverse than expected and supports the cofactor-binding site as being a unique subsite to target in drug design against bacterial NATs.  相似文献   

6.
Summary This study evaluates the potential of Paenibacillus brasilensis strain PB177 to inhibit phytopathogenic fungi commonly causing maize diseases and to colonize maize plants. In vitro assays demonstrated antagonistic activity against the fungal pathogens, Fusarium moniliforme and Diplodia macrospora. The PB177 strain was tagged with the gfp gene, encoding the green fluorescent protein (GFP) and GFP-tagged bacteria were detected attached to maize roots by stereo- and confocal microscopy. The GFP-tagged bacteria were also used to treat maize seeds before challenging the seeds with two phytopathogenic fungi. The results demonstrated that the bacterial cells are mobilized to the maize roots in the presence of the fungal pathogens. The ability of P. brasilensis PB177 to inhibit fungal growth in vitro and its capability of colonization of maize roots in vivo suggest a potential application of this strain as a biological control agent. This is the first report on the successful introduction of the GFP marker gene into a P. brasilensis strain, enabling the direct observation of these promising plant growth promoting bacteria on maize roots in situ.  相似文献   

7.
The effects of berberine on growth, arylamine N-acetyltransferase (NAT) activity, and gene expression in Salmonella Typhi (Typhi) were described. The growth inhibition of Typhi was determined by measuring absorbance by optical density (OD at 650 nm). The NAT activity was determined by measuring the levels of 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF) by high-performance liquid chromatography. The results demonstrated that 24-h berberine treatment decreased bacteria growth and amounts of AAF in Typhi. Western blotting and flow cytometry were used for examining the levels of NAT after bacteria were cotreated with or without various concentrations of berberine, and results indicated that berberine decreased the levels of NAT in Typhi. Polymerase chain reaction was used for examining the gene expression of NAT (mRNA NAT), and results indicated that berberine affects mRNA NAT1 expression in Typhi.  相似文献   

8.
Recycling of plant biomass by a community of bacteria and fungi is fundamental to carbon flow in terrestrial ecosystems. Here we report how the plant fermenting, soil bacterium Clostridium phytofermentans enhances growth on cellulose by simultaneously lysing and consuming model fungi from soil. We investigate the mechanism of fungal lysis to show that among the dozens of different glycoside hydrolases C. phytofermentans secretes on cellulose, the most highly expressed enzymes degrade fungi rather than plant substrates. These enzymes, the GH18 Cphy1799 and Cphy1800, synergize to hydrolyse chitin, a main component of the fungal cell wall. Purified enzymes inhibit fungal growth and mutants lacking either GH18 grow normally on cellulose and other plant substrates, but have a reduced ability to hydrolyse chitinous substrates and fungal hyphae. Thus, C. phytofermentans boosts growth on cellulose by lysing fungi with its most highly expressed hydrolases, highlighting the importance of fungal interactions to the ecology of cellulolytic bacteria.  相似文献   

9.
The chitinase enzyme was identified in isolated bacteria of maize rhizosphere as well as its potential for the biological control of fungi associated at seeds of the same plant. The production of chitinase enzyme was found in the genera identified as Acinetobacter, Bacterium, Burkholderia, Paenibacillus, Pseudomonas, Rhizobium, Shewanella, Sphingomonas and Stenotrophomonas. Bacterial isolates with ability to degrade fungal mycelium from maize fungi as Fusarium and Alternaria among others, were detected. Bacterial chitinase activity and the presence of the chiA gene were determined. The inoculation of chitinolytic bacteria showed a positive effect in the control of fungi in maize seeds. The results support the potential use of chitinase enzyme producing bacteria on the control of phytopathogenic fungi.  相似文献   

10.
Arbuscular mycorrhizal (AM) fungi produce an extensive hyphal network which develops in the soil, producing a specialised niche for bacteria. The aim of this paper is to review briefly the interactions shown by these symbiotic fungi with two bacterial groups: (i) the plant-growth promoting rhizobacteria (PGPRs) which are usually associated with fungal surfaces in the rhizosphere, and (ii) a group of endocellular bacteria, previously identified as being related to Burkholderia on the basis of their ribosomal sequence strains. The endobacteria have been found in the cytoplasm of some isolates of AM fungi belonging to Gigasporaceae and offer a rare example of bacteria living in symbiosis with fungi. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Abstract

In recent years, the hadal trenches have been recognized as biological hot spots for deep sea researchers. Due to high hydrostatic pressure, low temperatures, high salinity and low nutrients, the microorganisms in hadal trenches may have unique community structure with potential for biotechnical application. Compared with bacteria and archaea, the diversity and ecological roles of fungi in hadal trenches remain largely unknown. The purpose of this study was to explore fungal diversity in deep-sea sediments of the Yap trench and their denitrification potential. In the present study, a total of 106 fungal strains were isolated from six sediment samples collected in the East Yap Trench. These fungi belonged to five classes (Dothideomycetes, Eurotiomycetes, Sordariomycetes, Cystobasidiomycetes, and Microbotryomycetes), thirteen genera (Acremonium, Alternaria, Aureobasidium, Aspergillus, Cladosporium, Cystobasidium, Engyodontium, Gliomastix, Lecanicillium, Penicillium, Phoma, Rhodotorula and Trichoderma) and eighteen species, based on morphological identification and ITS-rDNA sequence analysis. Among them, the dominant genus is Cladosporium, which accounting for 42.45% of the total fungal strains. Meanwhile, the denitrification potential of the fungal strains was also examined with two different denitrifying media (nitrate and nitrite as sole substrate, respectively). Two fungal strains (Acremonium sp. and Aspergillus versicolor), were found to be able to produce N2O ex situ in the presence of nitrite. No fungus was found to produce N2O by using nitrate. Our results suggest that fungi in hadal sediments, play important roles in nitrogen cycles.  相似文献   

12.
Anammox and denitrification mediated by bacteria are known to be the major microbial processes converting fixed N to N2 gas in various ecosystems. Codenitrification and denitrification by fungi are additional pathways producing N2 in soils. However, fungal codenitrification and denitrification have not been well investigated in agricultural soils. To evaluate bacterial and fungal processes contributing to N2 production, molecular and 15N isotope analyses were conducted with soil samples collected at six different agricultural fields in the United States. Denitrifying and anammox bacterial abundances were measured based on quantitative PCR (qPCR) of nitrous oxide reductase (nosZ) and hydrazine oxidase (hzo) genes, respectively, while the internal transcribed spacer (ITS) of Fusarium oxysporum was quantified to estimate the abundance of codenitrifying and denitrifying fungi. 15N tracer incubation experiments with 15NO3 or 15NH4+ addition were conducted to measure the N2 production rates from anammox, denitrification, and codenitrification. Soil incubation experiments with antibiotic treatments were also used to differentiate between fungal and bacterial N2 production rates in soil samples. Denitrifying bacteria were found to be the most abundant, followed by F. oxysporum based on the qPCR assays. The potential denitrification rates by bacteria and fungi ranged from 4.118 to 42.121 nmol N2-N g−1 day−1, while the combined potential rates of anammox and codenitrification ranged from 2.796 to 147.711 nmol N2-N g−1 day−1. Soil incubation experiments with antibiotics indicated that fungal codenitrification was the primary process contributing to N2 production in the North Carolina soil. This study clearly demonstrates the importance of fungal processes in the agricultural N cycle.  相似文献   

13.
Gibberellins (GAs) constitute a large family of tetracyclic diterpenoid carboxylic acids, some members of which function as growth hormones in higher plants. As well as being phytohormones, GAs are also present in some fungi and bacteria. In recent years, GA biosynthetic genes from Fusarium fujikuroi and Arabidopsis thaliana have been cloned and well characterised. Although higher plants and the fungus both produce structurally identical GAs, there are important differences indicating that GA biosynthetic pathways have evolved independently in higher plants and fungi. The fact that horizontal gene transfer of GA genes from the plant to the fungus can be excluded, and that GA genes are obviously missing in closely related Fusarium species, raises the question of the origin of fungal GA biosynthetic genes. Besides characterisation of F. fujikuroi GA pathway genes, much progress has been made in the molecular analysis of regulatory mechanisms, especially the nitrogen metabolite repression controlling fungal GA biosynthesis. Basic research in this field has been shown to have an impact on biotechnology. Cloning of genes, construction of knock-out mutants, gene amplification, and regulation studies at the molecular level are powerful tools for improvement of production strains. Besides increased yields of the final product, GA3, it is now possible to produce intermediates of the GA biosynthetic pathway, such as ent-kaurene, ent-kaurenoic acid, and GA14, in high amounts using different knock-out mutants. This review concentrates mainly on the fungal biosynthetic pathway, the genes and enzymes involved, the regulation network, the biotechnological relevance of recent studies, and on evolutionary aspects of GA biosynthetic genes.  相似文献   

14.
15.
The distribution of ω-amino acid transaminases in microorganisms was investigated, ω-Amino acid: pyruvate transaminase (ω-APT) was found in bacteria and yeasts, but not in actinomycetes and fungi. On the contrary, aminobutyrate: α-ketoglutarate transaminase (GABA-T) was shown in most of the microorganisms from bacteria to fungi. β-Alanine is a preferred amino donor for the co-APT reaction. Although bacterial and yeast GABA-T are inactive for β-alanine, fungal and actinomycete enzymes react with this compound and γ-aminobutyrate. In comparing these results with those of plant and mammalian enzymes, two different pathways of co-amino acid metabolism are suggested for bacteria, yeast and plants, i.e. one for β-alanine and the other for γ-aminobutyrate, catalyzed by ω-APT and GABA-T, respectively. In actinomycetes, fungi, and mammals GABA-T may be involved in the metabolism of both ω-amino acids. In addition, evolutionary changes of ω-amino acid transaminases are discussed.  相似文献   

16.
The purpose of this research was to search for evolutionarily conserved fungal sequences to test the hypothesis that fungi have a set of core genes that are not found in other organisms, as these genes may indicate what makes fungi different from other organisms. By comparing 6355 predicted or known yeast (Saccharomyces cerevisiae) genes to the genomes of 13 other fungi using Standalone TBLASTN at an e-value <1E-5, a list of 3340 yeast genes was obtained with homologs present in at least 12 of 14 fungal genomes. By comparing these common fungal genes to complete genomes of animals (Fugu rubripes, Caenorhabditis elegans), plants (Arabidopsis thaliana, Oryza sativa), and bacteria (Agrobacterium tumefaciens, Xylella fastidiosa), a list of common fungal genes with homologs in these plants, animals, and bacteria was produced (938 genes), as well as a list of exclusively fungal genes without homologs in these other genomes (60 genes). To ensure that the 60 genes were exclusively fungal, these were compared using TBLASTN to the major sequence databases at GenBank: NR (nonredundant), EST (expressed sequence tags), GSS (genome survey sequences), and HTGS (unfinished high-throughput genome sequences). This resulted in 17 yeast genes with homologs in other fungal genomes, but without known homologs in other organisms. These 17 core, fungal genes were not found to differ from other yeast genes in GC content or codon usage patterns. More intensive study is required of these 17 genes and other common fungal genes to discover unique features of fungi compared to other organisms.Reviewing Editor: Prof. David Gottman  相似文献   

17.
The interactions between biocontrol fungi and bacteria may play a key role in the natural process of biocontrol, although the molecular mechanisms involved are still largely unknown. Synergism can occur when different agents are applied together, and cell wall degrading enzymes (CWDEs) produced by fungi can increase the efficacy of bacteria. Pseudomonas spp. produce membrane-disrupting lipodepsipeptides (LDPs) syringotoxins (SP) and syringomycins (SR). SR are considered responsible for the antimicrobial activity, and SP for the phytotoxicity. CWDEs of Trichoderma spp. synergistically increased the toxicity of SP25-A or SRE purified from P. syringae against fungal pathogens. For instance, the fungal enzymes made Botrytis cinerea and other phytopathogenic fungi, normally resistant to SP25-A alone, more susceptible to this antibiotic. Pseudomonas produced CWDEs in culture conditions that allow the synthesis of the LDPs. Purified bacterial enzymes and metabolites were also synergistic against fungal pathogens, although this mixture was less powerful than the combination with the Trichoderma CWDEs. The positive interaction between LDPs and CWDEs may be part of the biocontrol mechanism in some Pseudomonas strains, and co-induction of different antifungal compounds in both biocontrol bacteria and fungi may occur. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Microbes play an important role in decomposition of macrophytes in shallow lakes, and the process can be greatly affected by bacteria–fungi interactions in response to material composition and environmental conditions. In this study, microbes involved in the decomposition of leaf litter from three macrophyte species, Zizania latifolia, Hydrilla verticillata and Nymphoides peltata, were analysed at temperatures of 5, 15 and 25 °C. Results indicate that the decomposition rate was affected by temperature. Bacterial alpha diversity increased significantly along the time, while both temperature and plant species had a significant impact on the bacterial community, and plant type was shown to be the most important driving factor for the fungal community. The cosmopolitan bacterial taxa affiliated with Gammaproteobacteria, Bacteroidetes, Deltaproteobacteria, Firmicutes and Spirochaetes were key species in the investigated ecological networks, demonstrating significant co-occurrence or co-exclusion relationships with Basidiomycota and Ascomycota, according to different macrophyte species. This study indicates that bacteria involved in the decomposition of macrophyte leaf litter are more sensitive to temperature variance, and that fungi have a higher specificity to the composition of plant materials. The nutrient content of Hydrilla verticillata promoted a positive bacteria–fungi interaction, thereby accelerating the decomposition and re-circulation of leaf litter.  相似文献   

19.
The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicrobial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N′-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of the tested strains with minimum inhibitory concentration (MIC) values ranging from <0.5 to >500 μM against bacteria and 1.0 to >31.3 μg/mL against fungi; and in most cases, they exhibited either superior or similar antimicrobial activity compared to those of the standard drugs used in the clinic. We also observed minimal emergence of drug resistance to these newly synthesized compounds by bacteria and fungi even after 15 passages, and we found weak to moderate inhibition of the human Ether-à-go-go-related gene (hERG) channel with acceptable IC50 values ranging from 1.12 to 3.29 μM. Overall, these studies show that bis(N-amidinohydrazones) and N-(amidino)-N′-aryl-bishydrazones are potentially promising scaffolds for the discovery of novel antibacterial and antifungal agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号