首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of β-endorphin on 2-, 4-, and 8-cell embryo development in vitro was studied. It is shown that the hormone has no effect on a 2-cell embryo development, but it has enhanced viability of 4- and 8-cell mouse embryos. The number of blastocyst formations increases in the presence of 0.1 μM β-endorphin in embryo cultured medium, and the number of blastocysts with abnormal structure decreases. The effect of the hormone on the change of intracellular concentration of Ca2+ ions in 2-, 4-, and 8-cell mouse embryos has been studied with the help of fluorescent microscopy. The effect of adenylate cyclase and phospholipase activity blockers, and naloxone on the change of intracellular concentration of Ca2+ ions in the early mouse embryo in the presence of β-endorphin has also been studied. It is shown that 2-cell embryos have opioid and nonopioid β-endorphin receptors, whereas 4- and 8-cell mouse embryos have only nonopioid β-endorphin receptors. It is also shown that the effect of β-endorphin in the early mouse embryo through nonopioid receptors occurs with the participation of intracellular Ca2+ and adenylate cyclase signaling system.  相似文献   

2.
Intercellular junction formation in preimplantation mouse embryos was investigated with thin-section and freeze-fracture electron microscopy. At the four-cell stage, regions of close membrane apposition with focal points of membrane contact and occasional underlying cytoplasmic densities were observed between blastomeres of thin-sectioned embryos. Corresponding intramembrane specializations were not, however, observed in freeze-fractured embryos. At the 8- to 16-cell stage, small gap and macula occludens junctions and complexes of these junctions were observed at all levels between blastomeres of freeze-fractured embryos. As development progressed from the early to mid 8- to 16-cell stage, the size of the occludens/gap junction complexes increased, forming fascia occludens/gap junction complexes. At the morula stage, gap junctions and occludens/gap junction complexes were observed on both presumptive trophoblast and inner cell-mass cells. Zonula occludens junctions were first observed at the morula stage on presumptive trophoblast cells of freeze-fractured embryos. The number of embryos possessing zonula occludens junctions increased at the mid compared to the early morula stage. At the blastocyst stage, junctional complexes consisting of zonula occludens, macula adherens, and gap junctions were observed between trophoblast cells of freeze-fractured and thin-sectioned embryos. Isolated gap and occludens junctions, adherens junctions, and occludens/gap junction complexes were observed on trophoblast and inner cell-mass cells.  相似文献   

3.
Mitochondrial DNA in the mouse preimplantation embryo   总被引:2,自引:0,他引:2  
Total DNA was extracted from mouse embryos that were collected from CD-1 random-bred females on Day 1 of pregnancy and cultured for up to 4 days in vitro, or from the reproductive tracts of pregnant females on Days 1, 3, 4 and 5 of pregnancy. Southern blot analyses with a cloned mouse mitochondrial DNA probe were performed to determine the relative levels of mitochondrial DNA in the zygote, morula, blastocyst and early egg cylinder stage embryos. The results indicated that the total amount of mitochondrial DNA does not change during development of the mouse embryo up to the egg cylinder stage and is not altered during in-vitro culture of the fertilized one-cell embryo to the blastocyst stage.  相似文献   

4.
The preimplantation mouse embryo expresses two polypeptides, Mr 240,000 and Mr 235,000, that are immunologically cross-reactive with antibody to the alpha and beta subunits of mouse brain spectrin. We investigated the synthesis of the spectrin subunits in the Triton-soluble and Triton-insoluble fractions of fertilized eggs, two-cell embryos, compacted morulae, and blastocysts labeled with L-[35S]methionine. Synthesis of embryonic spectrin began in the Triton-soluble fraction with significant levels of alpha-spectrin synthesis first detected in the morula stage and significant levels of beta-spectrin synthesis detected in the blastocyst stage. Incorporation of newly synthesized alpha- and beta-spectrin into the cytoskeletal fraction took place in the blastocyst when equal amounts of both subunits were assembled. Previous studies have shown Triton-insoluble spectrin to be concentrated in regions of cell-cell contact in the embryo (J. S. Sobel and M. A. Alliegro, 1985, J. Cell Biol. 100, 333-336). The temporal and spatial correlation between the assembly of newly synthesized spectrin and its concentration in regions of cell apposition is consistent with the hypothesis that cell contact may influence the assembly of embryonic spectrin.  相似文献   

5.
Summary Phosphofructokinase activity remains relatively constant during the preimplantation period in the mouse, with a low point at day 4 (approximately 3.0×1–11 moles of substrate converted per embryo per hour).  相似文献   

6.
7.
Oocyte mitochondrial dysfunction has been proposed as a cause of high levels of developmental retardation and arrest that occur in human preimplantation embryos generated using assisted reproductive technology in the treatment of some causes of female infertility. To investigate this, a model of mitochondrial dysfunction was developed in mouse oocytes using a method of photosensitization of the mitochondrion-specific dye, rhodamine-123. After in vitro fertilization, dye-loaded and photosensitized oocytes showed developmental arrest in proportion to irradiation time. Morphological and metabolic assessments of zygotes indicated an increase in mitochondrial permeability that subsequently resulted in apoptotic degeneration. Development was partially restored by inhibition of mitochondrial permeability transition pore formation by oocyte pretreatment with cyclosporin A. Oocyte mitochondria are therefore physiological regulators of early embryo development and potential sites of pathological insult that may perturb oocyte and subsequent preimplantation embryo viability. These findings have important implications for the treatment of clinically infertile women using assisted reproductive technologies.  相似文献   

8.
An SEM analysis of the effects of tunicamycin, cytochalasin B, and colcemid has yielded insights into the process of compaction in the early mouse embryo. All three reagents block or reverse compaction and decrease the number of microvilli (MV), although some MV polarization is permitted. In addition, tunicamycin is shown to lessen cell adhesion even in compacted embryos. Cytochalasin B causes the formation of MV clumps some of which are preferentially localized to the apex or lateral ring region. Colcemid reverses compaction and, coupled with Pronase treatment, completely blocks compaction of uncompacted 8-cell embryos. Observations also suggest that MV polarization can occur only once but compaction (the close adherance and flattening of blastomeres) can be reversed and reinduced. Evidence is consistent with a three-step compaction process involving (1) cell surface recognition and attachment of a ring of lateral microvilli to adjacent blastomeres, (2) subsequent microfilament shortening in these lateral MV, and (3) maintenance of the compacted and polarized state by microtubules.  相似文献   

9.
The effect of beta-endorphin on 2-, 4- and 8-cell embryo development in vitro was studied. It is shown, that hormone has no effect on 2-cell embryos development, but it has enhanced viability of 4- and 8-cell mouse embryos. The number ofblastocyst formation increases in presence of 0.1 microM beta-endorphin in embryo cultured medium but the number of blastocyst with abnormal structure decreases. The effect of hormone on the change of intracellular concentration of Ca2+ ion in 2-, 4- and 8-cell mouse embryo has been studied with the help of fluorescent microscopy. The effect of adenylate cyclase, and phospholipase activity blockers and opioid blocker naloxone on the change of intracellular concentration of Ca2+ ion in early mouse embryo in the presence of beta-endorphin have been also studied. It is shown that 2-cell embryo has opioid and nonopioid beta-endorphin receptors, whereas 4- and 8-cell mouse embryos have only nonopoioid beta-endorphin receptors. It is also shown that the effect of beta-endorphin in the early mouse embryo through a nonopioid receptors occurs with the participation of intracellular Ca2+ and adenylate cyclase signaling system.  相似文献   

10.
Cytokeratin filament assembly in the preimplantation mouse embryo   总被引:8,自引:0,他引:8  
The timing, spatial distribution and control of cytokeratin assembly during mouse early development has been studied using a monoclonal antibody, TROMA-1, which recognizes a 55,000 Mr trophectodermal cytokeratin (ENDO A). This protein was first detected in immunoblots at the 4-cell stage, and became more abundant at the 16-cell stage and later. Immunofluorescence analysis revealed assembled cytokeratin filaments in some 8-cell blastomeres, but not at earlier stages. At the 16-cell stage, filaments were found in both polarized (presumptive trophectoderm; TE) and apolar (presumptive inner cell mass; ICM) cells in similar proportions, although polarized cells possessed more filaments than apolar cells. By the late 32-cell, early blastocyst, stage, all polarized (TE) cells contained extensive filament networks whereas cells positioned inside the embryo tended to have lost their filaments. The presence of filaments in inside cells at the 16-cell stage and in ICM cells was confirmed by immunoelectron microscopy. Lineage tracing techniques demonstrated that those cells in the ICM of early blastocysts which did possess filaments were almost exclusively the progeny of polar 16-cell blastomeres, suggesting that these filaments were directly inherited from outside cells at the 16- to 32-cell transition. Inhibitor studies revealed that proximate protein synthesis but not mRNA synthesis is required for filament assembly at the 8-cell stage. These results demonstrate that there are quantitative rather than qualitative differences in the expression of cytokeratin filaments in the inner cell mass and trophectoderm cells of the mouse embryo.  相似文献   

11.
12.
Malic dehydrogenase activity in the preimplantation mouse embryo   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
15.
Pakrasi PL  Jain AK 《Life sciences》2007,80(16):1503-1507
Cyclooxygenase (COX) plays an important role in prostaglandin (PG) synthesis and has two isoforms, COX1 and COX2. PGI synthase (PGIS) catalyzes the isomeization of PGH(2) to prostacyclin (PGI(2)). It is reported that COX2 derived PGI2(2) plays a critical role in blastocyst implantation and decidualization and PGI2 mediates its function via PPARdelta receptor. It is also known that cyclooxygenase derived prostaglandins play an important role in mouse blastocyst hatching in vitro. In this study we hypothesized that COX2 derived PGI2 plays an important role in preimplantation embryonic development by increasing the cell number. To examine this hypothesis, 8-cell stage mouse embryos were cultured in the presence of selective inhibitors of COX1 (SC560), COX2 (NS398) and PGIS (U51605) respectively. COX2 and PGIS inhibitor significantly reduced the blastocyst development and presence of PGI2 analogue along with these inhibitors restored the blastocyst development by increasing the total number of embryonic cells. Our immunohistochemical analysis showed that COX1 is expressed at 2-cell, 8-cell, compaction and blastocyst stage whereas COX2 expression starts from eight cell stage embryos. PGIS and PPARdelta expression starts at 2-cell stage of development. Our results suggest that PGI(2) may affect blastomeres number via the so called hypothesis of PPARdelta nuclear receptor in autocrine manner.  相似文献   

16.
K R Willison  P L Stern 《Cell》1978,14(4):785-793
A monoclonal antibody recognizing a Forssman antigenic specificity has been shown to react with cells of the preimplantation mouse embryo. The antigen is believed to be carried on glycolipid molecules on teratocarcinoma stem cells. This antigen is first detected on the trophectoderm of the early blastocyst. The topography of the expression on the trophectoderm is striking and novel. The antigen is no longer found on these cells after the blastocyst has hatched from the zona pellucida in utero. Inner cell masses are antigen-positive at all times. This is the first study of the distribution of a single antigenic determinant in early mouse embryogenesis.  相似文献   

17.
Mouse preimplantation embryos consume pyruvate preferentially during the early developmental stages, before glucose becomes the predominant energy substrate in the blastocyst. To investigate the importance of the switch to glucose utilization at the later developmental stages, mouse embryos from F1 hybrid mice (CBA/Ca × C57BL/6) were cultured from the one-and two-cell stages (22 and 46 h post hCG, respectively) for 5 days in a modified medium, M16, containing 0.33 mM pyruvate and 5 or 23 mM D+L-lactate, in the presence and absence of 1 mM glucose (M16+G and M16-G, respectively). Nutrient uptakes were also determined over this time. Some embryos cultured in M16-G were transferred to M16+G at 94 or 118 h post hCG. Embryos cultured from the two-cell stage in M16+G exhibited the characteristic fall in pyruvate consumption between the morula and the blastocyst stage; those cultured from the two-cell stage in M16-G compensated for the lack of glucose by consuming increasing amounts of pyruvate, from 2.78 pmol/embryo/h at 58 h post hCG to 5.21 pmol/embryo/h at 154 h post hCG. However, the percentage of embryos developing to the blastocyst stage, the hatching rate, and blastocyst cell numbers (50.6 ± 2.5 [28] vs. 105 ± 3.8 [37]) were all lower in this group. When exposed to glucose at 94 or 118 h post hCG, embryos cultured from the two-cell stage in M16-G readily consumed glucose in preference to pyruvate, although the characteristic fall in pyruvate consumption was not observed. One-cell embryos cultured continuously in M16-G were only able to develop to the morula stage, after which time they degenerated. In these embryos pyruvate was readily consumed between 22 and 94 h post hCG, before falling from 2.77 pmol/embryo/h at 83 h post hCG to 0.045 pmol/embryo/h at 130 h post hCG. Transfer of these embryos to M16+G at 94 and 118 h post hCG did not support development to the hatching blastocyst stage. The results show that mouse preimplantation embryos from F1 hybrid mice (CBA/Ca × C57BL/6) need only be exposed to glucose for less than 24 h between 22 and 94 h post hCG in order to develop from the morula to the blastocyst stage in vitro. However, the exposure time needs to be increased to between 24 and 72 h in order that blastocyst cell numbers reach control levels. The importance of glucose before the morula stage may relate to the need to synthesize glycogen for later use. If the obligatory requirement for glucose is fulfilled, embryos are able to utilize pyruvate in the absence of glucose at the later stages of development. These results show that the mouse preimplantation embryo can, to some extent, adapt metabolically to changes in its external environment. © 1995 Wiley-Liss, Inc.  相似文献   

18.
19.
Gap junctional communication in the preimplantation mouse embryo.   总被引:15,自引:0,他引:15  
C W Lo  N B Gilula 《Cell》1979,18(2):399-409
In this study, we examined cell-to-cell communication via gap junctional channels between the cells of the early mouse embryo from the 2-cell stage to the preimplantation blastocyst stage. The extent of communication was examined by monitoring for the presence of ionic coupling, the transfer of injected fluorescein (molecular weight 330) and the transfer of injected horseradish peroxidase (molecular weight 40,000). In the 2-cell, 4-cell and precompaction 8-cell embryos, cytoplasmic bridges between sister blastomeres were responsible for ionic coupling and the transfer of injected fluorescein as well as the transfer of injected horseradish peroxidase.In contrast, no communication was observed between blastomeres from different sister pairs. Junction-mediated intercellular communication was unequivocably detected for the first time in the embryo at the early compaction stage (late 8-cell embryo). At that stage, ionic coupling was present and fluorescein injected into one cell spread to all eight cells of the embryo. Injected horseradish peroxidase was passed to only one other cell, however, again indicating the presence of cytoplasmic bridges between sister blastomeres. Junctional communication with respect to both ionic coupling and dye transfer was retained between all the cells throughout compaction. At the blastocyst stage, trophoblast cells of the blastocyst were linked by junctional channels to other trophoblast cells as well as to cells of the inner cell mass, as indicated by the spread of injected fluorescein. In addition, the extent of communication between the cells of the inner cell mass was examined in inner cell masses isolated by immunosurgery; both ionic coupling and the complete spread of injected fluorescein were observed.  相似文献   

20.
1. The activity of glucose 6-phosphate dehydrogenase was determined in mouse embryos during the first 5 days of development from the time of ovulation up to implantation. 2. The activity decreased from 1.39 to 0.19mmumoles of NADP reduced/hr./embryo from ovulation to implantation. 3. The specific activity of the embryo on the first day was higher than specific activities reported for most other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号