首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood fatty acids are an important parameter for the synthesis of brain myelin as exogenous stearic acid is needed: after subcutaneous injection to 18-day-old mice this labelled stearic acid is transported into brain myelin and incorporated into its lipids. However the acid is partly metabolized in the brain by elongation (thus providing very long chain fatty acids, mainly lignoceric acid) or by degradation to acetate units (utilized for synthesis of medium chain fatty acids as palmitic acid, and cholesterol). These metabolites are further incorporated into myelin lipids. The myelin lipid radioactivity increases up to 3 days; most of the activity is found in phospholipids; their fatty acids are labelled in saturated as well as in polyunsaturated homologues but sphingolipids, especially cerebrosides, contain also large amounts of radioactivity (which is mainly found in very long chain fatty acids, almost all in lignoceric acid). The occurrence of unesterified fatty acids must be pointed out, these molecules unlike other lipids, are found in constant amount (expressed in radioactivity per mg myelin lipid).  相似文献   

2.
The biosynthesis of cuticular hydrocarbons was investigated in male and female Drosophila melanogaster (Canton-S strain), especially in those with a pheromonal role i.e. male 7-tricosene and female 7, 11- heptacosadiene. The incorporation of radioactivity was followed after topical application of (14)C-labelled myristic, palmitic and stearic acid and (3)H-labelled cis-vaccenic acid on one to ten day old flies. The incorporation levels into unsaturated hydrocarbons are similar in both sexes, depending markedly on the chain length of the saturated precursor, with a maximum level from myristic acid. Cis-vaccenic acid leads only to unsaturated compounds. With this precursor, there is an enhanced incorporation into female monoenes and dienes, maximum in two to three day old females. The total fatty acid composition shows the highest abundance of fatty acids with 16 carbon atoms and the presence of a major position for double bond, Delta9. Moreover, cis-vaccenic acid and 17-tetracosenoic acid are identified by GC-MS analysis. These data support an elongation-decarboxylation mechanism for the biosynthesis of D. melanogaster cuticular hydrocarbons. Its early steps for male monoenes and female monoenes and dienes might involve a Delta9 desaturase transforming palmitic acid into palmitoleic acid which would then be elongated into vaccenic acid, an important common precursor for all pheromones.  相似文献   

3.
1. Previous experiments showed that fatty acids were incorporated into triacylglycerols by homogenates of Ceratitis capitata larvae far more efficiently than by pharate adult homogenates. This metabolic behaviour of both stages of development of the insect has been interpreted throughout the existence of a different acyltransferase activity. To obtain new data on the acyltransferase mechanism, a time-course of the stereospecific incorporation of labelled myristic, palmitic, oleic and linoleic acids into the sn-positions of triacylglycerols has been followed. 2. Studies on the stereospecific incorporation of labelled fatty acids confirmed previous results. Palmitic acid was mainly incorporated into sn-1 and sn-3 positions whereas position 2 exhibited a low incorporation. Myristic acid acylated sn-3 position at a higher rate than it acylated the other sn-positions. Oleic acid was more specifically distributed than palmitic acid and linoleic acid was more efficiently incorporated than the monounsaturated acid. All these data reflect substrate differences in the acyltransferase activity of larval homogenates. Pharate adult homogenates incorporated fatty acids very scarcely and mainly into positions (1 + 3). 3. Kinetics of incorporation of labelled fatty acids into the sn-positions points to a non-random distribution with respect to the major saturated and unsaturated fatty acids in triacylglycerols of larvae of Ceratitis capitata.  相似文献   

4.
The metabolism of 1-11C-labelled derivatives of palmitic (C16:0), arachidonic (C20:4,n-6) lignoceric (C21:0) and tetracosatetraenoic (C24:4,n-6) acids was studied in normal skin fibroblast cultures and in cultures of fibroblasts from peroxisome-deficient (Zellweger's syndrome) patients. Radiolabelled products of the fatty acids included carbon dioxide. C14-24 saturated and mono-unsaturated fatty acids formed from released acetate either by synthesis de novo or by elongation of endogenous fatty acids, fatty acids formed by 2-6-carbon elongation of added substrates, and a number of water-soluble compounds, some of which were tentatively identified as the amino acids glutamine, glutamic acid and asparagine. The labelled amino acids were found predominantly in the culture medium. Zellweger's syndrome fibroblasts showed a marked decrease in radiolabelled carbon dioxide and water-soluble-product formation from (I-14C)-labelled arachidonic, tetracosatetraenoic and lignoceric acids but not from [I-14C]palmitic acid, and the production of radiolabelled C14-18 fatty acids was also diminished. However, the elongation of individual fatty acids was either normal or above normal. Our data support the view that the oxidation of 20:4, 24:4 and 24:0 fatty acids in cultured skin fibroblasts takes place largely in peroxisomes, and further that the acetyl-CoA released by the beta-oxidation process is available for the synthesis of fatty acids and amino acids. We speculate that the generation of C2 units used for synthesis is a major peroxisomal function and that this function is absent or greatly impaired in Zellweger's syndrome cells.  相似文献   

5.
Incorporation of acetate-1-(14)C into phospholipids and fatty acids by lung slices from fetal and newborn lambs and from ewes was studied in vitro. The distribution of radioactivity in the fatty acids of neutral lipids, phospholipids, and lecithin was determined. Acetate-1-(14)C was incorporated into myristic, palmitic, and C(18) fatty acids. Of the lecithin fatty acids, myristic and palmitic were the major radioactive fatty acids. The results indicate that the lung of fetal lambs is able to synthesize lecithin containing saturated fatty acids, a major constituent of pulmonary surfactant. A marked increase in the rate of acetate incorporation into lecithin was observed during maturation, and these rates were higher than those obtained in the ewes. A possible relationship between developmental changes in lecithin biosynthesis and pulmonary surfactant is discussed.  相似文献   

6.
Entomophthora coronata 1932 and E. conica 1716 are quite different in their fatty acid composition and the unsaturation degree of synthesized lipids. The cultures were used as models to study metabolic transformations of exogenous 14C-labeled acetic, palmitic, stearic and oleic acids as well as to compare the activities of the synthetase and desaturase enzyme complexes. The cultures were capable of transforming exogenous acetic and fatty acids into polyunsaturated arachidonic acid. E. coronata 1932 whose lipids mainly contain fatty acids with a short chain could metabolize unsaturated oleic acid to yield polyene fatty acids. However, this culture metabolized exogenous acids at a far lower rate as compared with E. conica 1716. The high content of saturated fatty acids with a short chain in the lipids might be due to the specific action of the synthetase complex and to the low activity of the desaturation enzymes. It has been demonstrated for the first time that exogenous oleic acid is converted at a high rate by the cells into arachidonic acid, a precursor of prostaglandin compounds.  相似文献   

7.
The effect of saturated (palmitic, stearic, myristic) and unsaturated (oleic) fatty acids on the proliferation of Leptospirae was studied. Proliferation of the saprophytic strains G-45, K-1028 (serovar not identified) and of the pathogenic strain VGNKI-3 (serovar canicola) of Leptospirae was obtained on a serum-free medium with the addition of saturated fatty acids. The unsaturated oleic acid at relatively high concentrations (0.5 mg/ml) suppresses proliferation of these spirochetes. It has been demonstrated that the variants used in the experiment can be utilized for the study of nutritional requirements of Leptospirae and their metabolism.  相似文献   

8.
A human T mycoplasma (Ureaplasma urealyticum) incorporated radioactivity into its lipids from [1-14C]acetate in the growth medium. Methanolysis of the lipids showed the label to be confined almost entirely to the methyl esters of the fatty acids. About 80% of the label was associated with the methyl esters of the saturated fatty acids, and the rest was found in the unsaturated methyl ester fraction. Gas-liquid chromatography of the saturated methyl esters showed the label to be present in the peaks of palmitate, myristate, and stearate, whereas in the unsaturated methyl ester fraction most of the radioactivity emerged in the peak of palmitoleate. The addition of either oleic or palmitic acid to the growth medium markedly decreased the organisms' incorporation of radioactivity from acetate. It is concluded that the T mycoplasma strain is capable of de novo synthesis of both saturated and unsaturated fatty acids, in this respect differing from all of the Mycoplasma and Acholeplasma strains investigated to date.  相似文献   

9.
This study was designed to investigate the effect of myristic acid on the biosynthesis and metabolism of highly unsaturated fatty acids, when it is supplied in a narrow physiological range in the diet of the rat (0.2-1.2% of total dietary energy). Three experimental diets were designed, containing 22% of total dietary energy as lipids and increasing doses of myristic acid (0.71, 3.00 and 5.57% of total fatty acids). Saturated fat did not exceed 31% of total fat and the C18:3 n-3 amount in each diet was strictly equal (1.6% of total fatty acids). After 7 weeks, the diets had no effect on plasma cholesterol level but greatly modified the liver, plasma and adipose tissue saturated, monounsaturated and polyunsaturated fatty acid profiles. Firstly, daily intakes of myristic acid resulted in a dose-dependent tissue accumulation of myristic acid itself. Palmitic acid was significantly increased in the tissues of the rats fed the higher dose of myristic acid. A dose-response accumulation of tissue C16:1 n-7 as a function of dietary C14:0 was also shown. Secondly, a main finding was that, among n-3 and n-6 polyunsaturated fatty acids, a dose-response accumulation of liver and plasma C20:5 n-3 and C20:3 n-6 (two precursors of eicosanoids) as a function of dietary C14:0 was shown. This result suggests that dietary myristic acid may participate in the regulation of highly unsaturated fatty acid biosynthesis and metabolism.  相似文献   

10.
The incorporation of (14)C-labelled myristic, palmitic, stearic, oleic and linoleic acids in vitro into the lipids of bovine spermatozoa was measured at intervals from 2min to 2h. All acids were rapidly incorporated into diglycerides, myristic acid being metabolized to the greatest extent. Whereas the low incorporation of acids into total phospholipids reflected the relative stability of the major phospholipid fractions in sperm, the minor phospholipids, particularly phosphatidylinositol, showed comparatively high metabolic activity. Although, in general, saturated acids were incorporated more actively than unsaturated substrates, stearic acid was poorly incorporated into all lipids except phosphatidylinositol. In regard to fatty acid composition of sperm lipids it was notable that diglycerides contained myristic acid as the major component, and this acid was also a prominent moiety of phosphatidylinositol. Docosahexaenoic acid was the principal fatty acid of the major phospholipid classes. These findings have been discussed in relation to the role of lipids in the metabolism of spermatozoa.  相似文献   

11.
We examined the effects of three saturated fatty acids (myristic acid 14:0, palmitic acid 16:0, and stearic acid 18:0) on prostaglandin E 9-ketoreductase (PGE-9-KR, EC 1.1.1.189), which catalyzes the conversion of prostaglandin E2 (PGE2) into prostaglandin F2 alpha (PGF2 alpha). Palmitic acid inhibited PGE-9-KR activity dose-dependently, whereas the other two fatty acids had no effect. In spite of the structural similarity of these fatty acids, our findings suggest that, of the three, only palmitic acid has an inhibitory effect on PGE-9-KR.  相似文献   

12.
The effect of fatty acids on Mycobacterium smegmatis was examined in vitro at pH 5.0 to 7.0 to determine the role of fatty acids in the intracellular killing of mycobacteria. Unsaturated fatty acids showed strong bactericidal activity in low concentrations (0.005 to 0.02 mM), whereas saturated fatty acids, except for lauric and myristic acids, were not very effective even at a concentration of 0.2 mM. Addition of a saturated fatty acid (palmitic or stearic acid) to an unsaturated fatty acid (oleic or linoleic acid) did not strongly interfere with the bactericidal effect of the unsaturated fatty acid at pH 5.0 and 6.0. Ca2+ (3.0 mM), Mg2+ (1.0 mM), and gamma-globulin (0.4%) showed weak reversal effects on the bactericidal activity of unsaturated fatty acids at pH 5.0 and 6.0. Serum albumin and serum showed strong reversal effects. The concentrations of each fatty acid in a mixture (molar ratio, 1:1:1:1) of oleic, linoleic, palmitic, and stearic acids required for the killing of M. smegmatis in the presence of 2% serum (bovine, rabbit, or human) were 0.05 to 0.10 mM at pH 5.0 and 6.0 and 0.05 to 0.20 mM at pH 7.0, depending on the serum used. The susceptibilities of M. kansasii, M. bovis strain BCG, and M. tuberculosis to the mixture of the four fatty acids in the presence of 2% bovine serum were similar to that of M. smegmatis, although M. fortuitum was more resistant.  相似文献   

13.
The synthesis of phospholipids in mammalian cells is regulated by the availability of three critical precursor pools: those of choline, cytidine triphosphate and diacylglycerol. Diacylglycerols containing polyunsaturated fatty acids (PUFAs) apparently are preferentially utilized for phosphatide synthesis. PUFAs are known to play an important role in the development and function of mammalian brains. We therefore studied the effects of unsaturated, monounsaturated and polyunsaturated fatty acids on the overall rates of phospholipid biosynthesis in PC12 rat pheochromocytoma cells. Docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (AA, 20:4n-6) all significantly stimulated the incorporation of (14)C-choline into total cellular phospholipids. In contrast, monounsaturated oleic acid (OA) and the saturated palmitic (PA) and stearic (SA) acids did not have this effect. The action of DHA was concentration-dependent between 5 and 50 microM; it became statistically significant by 3 h after DHA treatment and then increased over the ensuing 3 h. DHA was preferentially incorporated into phosphatidylethanolamine (PE) and phosphatidylserine (PS), while AA predominated in phosphatidylcholine (PC).  相似文献   

14.
Compound-specific hydrogen isotopic compositions (deltaD) of saturated, monounsaturated and polyunsaturated fatty acids have been determined for natural marine macroalgae including two brown algae (Heterokontophyta) and two red algae (Rhodophyta). deltaD values of individual fatty acids from four macroalgae exhibit a wide variation ranging from -189% to +48%. Generally, stearic (18:0), arachidic (20:0) and behenic acids (22:0) are much more enriched in D by up to approximately 180% relative to myristic (14:0), palmitic (16:0), octatetraenoic [18:4(n-3)] and eicosapentaenoic acids [20:5(n-3)]. Other fatty acids such as oleic [18:1(n-9)], lenoleic [18:2(n-6)] and linolenic acids [18:3(n - 3)] fall isotopically between these fatty acids. This wide deltaD variation of fatty acids is probably explained by the hydrogen isotopic fractionation during desaturation being much larger than that during elongation in the network of polyunsaturated fatty acid biosynthesis. A large hydrogen isotopic fractionation during desaturation may cause D-enrichment in the remaining hydrogen of the residual fatty acids, which could be controlled by the relative flux into their desaturates.  相似文献   

15.
Myristic acid, the 14-carbon saturated fatty acid (C14:0), usually accounts for small amounts (0.5%-1% weight of total fatty acids) in animal tissues. Since it is a relatively rare molecule in the cells, the specific properties and functional roles of myristic acid have not been fully studied and described. Like other dietary saturated fatty acids (palmitic acid, lauric acid), this fatty acid is usually associated with negative consequences for human health. Indeed, in industrialized countries, its excessive consumption correlates with an increase in plasma cholesterol and mortality due to cardiovascular diseases. Nevertheless, one feature of myristoyl-CoA is its ability to be covalently linked to the N-terminal glycine residue of eukaryotic and viral proteins. This reaction is called N-terminal myristoylation. Through the myristoylation of hundreds of substrate proteins, myristic acid can activate many physiological pathways. This review deals with these potentially activated pathways. It focuses on the following emerging findings on the biological ability of myristic acid to regulate the activity of mammalian desaturases: (i) recent findings have described it as a regulator of the Δ4-desaturation of dihydroceramide to ceramide; (ii) studies have demonstrated that it is an activator of the Δ6-desaturation of polyunsaturated fatty acids; and (iii) myristic acid itself is a substrate of some fatty acid desaturases. This article discusses several topics, such as the myristoylation of the dihydroceramide Δ4-desaturase, the myristoylation of the NADH-cytochrome b5 reductase which is part of the whole desaturase complex, and other putative mechanisms.  相似文献   

16.
Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.  相似文献   

17.
In this study, the effects of dietary vitamin E, selenium, and their combination on the levels of fatty acid composition of the brain and liver tissues were examined. In brain tissue, the amounts of most fatty acids increased in vitamin E, combination and selenium groups compared with control group values. While the proportions of myristic, pentadecanoic, palmitic, linoleic, and total saturated fatty acids were decreased in vitamin E, Se and combination groups, eicosapentaenoic, total unsaturated and MUFA were increased in the same groups. In addition, the proportions arachidonic, eicosapentaenoic, total unsaturated, ω6 and MUFA in the combination group were higher than in the control group. In liver tissue, the amounts of myristic, pentadecanoic, palmitic, eicosedienoic, eicosapentaenoic, docosahexaenoic, ω3 and PUFA were higher in the combination group than in the control group. Also the proportions of eicosapentaenoic, docosahexaenoic acids in supplemented groups were higher than those in the control group. We conclude that dietary vitamin E and selenium have an influence on the levels of fatty acids in the brain and liver. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Effects of fatty acids on lysis of Streptococcus faecalis.   总被引:6,自引:5,他引:1       下载免费PDF全文
Palmitic, stearic, oleic, and linoleic acids at concentrations of 200 nmol/ml all inhibited autolysin activity 80% or more in whole cells or cell-free extracts. This concentration of the saturated fatty acids palmitic acid and stearic acid had little or no effect on the growth of whole cells or protoplasts. However, the unsaturated fatty acids oleic acid and linoleic acid induced lysis in both situations. This lytic effect is apparently not related to any uncoupling activity or inhibition of energy catabolism by unsaturated fatty acids. It is concluded that unsaturated fatty acids induce cell and protoplast lysis by acting as more potent membrane destabilizers than saturated fatty acids.  相似文献   

19.
Cerulenin, a specific inhibitor of fatty acids and sterol biosynthesis inhibited the growth of Epidermophyton floccosum, which was reversed when growth medium was supplemented with palmitic acid and sterols. Unsaturated fatty acids partially restored the growth. Cerulenin inhibited both phospholipid and sterol biosynthesis (60-70%) at the minimum inhibitory concentration (0.5 microgram/ml) as demonstrated by [32P]orthophosphoric acid and [14C]acetate incorporation into the respective lipids. Cerulenin-induced inhibition of phospholipid and sterol synthesis was dose dependent up to 0.5 microgram/ml. Exogenously supplied fatty acids and sterols restored the biosynthesis of phospholipids in cerulenin-treated cultures, while that of sterols was enhanced. The biosynthesis of both saturated and unsaturated fatty acids was inhibited by cerulenin.  相似文献   

20.
The metabolism of [1-14C]lignoceric acid (C24:0) and [1-14C]tetracosatetraenoic acid (C24:4, n-6) was studied in normal skin fibroblast cultures and in cultures from patients with defects in peroxisomal beta-oxidation (but normal peroxisomal numbers). Cells from X-linked adrenoleukodystrophy (ALD) patients with a presumed defect in a peroxisomal acyl-CoA synthetase, specific for fatty acids of carbon chain lengths greater than 22 (very-long-chain fatty acids; VLCFA), showed a relatively normal production of radiolabelled CO2 and water-soluble metabolites from [1-14C]C24:0. However, the products of synthesis from acetate de novo (released by beta-oxidation), i.e. C16 and C18 fatty acids, were decreased, and carbon chain elongation of the fatty acid was increased. In contrast, cell lines from two patients with an unidentified lesion in peroxisomal beta-oxidation (peroxisomal disease, PD) showed a marked deficiency in CO2 and water-soluble metabolite production, a decreased synthesis of C16 and C18 fatty acids and an increase in carbon chain elongation. The relatively normal beta-oxidation activity of ALD cells appears to be related to low uptake of substrate, as a defect in beta-oxidation is apparent when measurements are performed on cell suspensions under high uptake conditions. Oxidation of [1-14C]C24:4 was relatively normal in ALD cells and in the cells from one PD patient but abnormal in those from the other. Our data suggest that, despite the deficiency in VLCFA CoA synthetase, ALD cells retain a near normal ability to oxidize both saturated and polyunsaturated VLCFA under some culture conditions. However, acetate released by beta-oxidation of the saturated VLCFA and, to a much lesser degree, the polyunsaturated VLCFA, appears to be used preferentially for the production of CO2 and water-soluble products, and acetate availability for fatty acid synthesis in other subcellular compartments is markedly decreased. It is likely that the increased carbon chain elongation of the saturated VLCFA which is also observed reflects the increased availability of substrate (C24:0) and/or an increase in microsomal elongation activity in ALD cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号