首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monosodium glutamate (MSG) produces neurodegeneration in several brain regions when it is administered to neonatal rats. From an early embryonic age to adulthood, GABA neurons appear to have functional glutamatergic receptors, which could convert them in an important target for excitotoxic neurodegeneration. Changes in the activity of the GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), have been shown after different neuronal insults. Therefore, this work evaluates the effect of neonatal MSG treatment on GAD activity and kinetics in the cerebral cortex, striatum, hippocampus and cerebellum of the rat brain during postnatal development. Neonatal MSG treatment decreased GAD activity in the cerebral cortex at 21 and 60 postnatal days (PD), mainly due to a reduction in the enzyme affinity (K(m)). In striatum, the GAD activity and the enzyme maximum velocity (V(max)) were increased at PD 60 after neonatal MSG treatment. Finally, in the hippocampus and cerebellum, the GAD activity and V(max) were increased, but the K(m) was found to be lower in the experimental group. The results could be related to compensatory mechanisms from the surviving GABAergic neurons, and suggest a putative adjustment in the GAD isoform expression throughout the development of the postnatal brain, since this enzyme is regulated by the synaptic activity under physiological and/or pathophysiological conditions.  相似文献   

2.
We have previously demonstrated that 4-day-treatment of mice with bilobalide, a sesquiterpene of Ginkgo biloba L., increases GABA levels in mouse brain, but, effects of chronic treatment with it are not clear. To study effects of chronic treatment of mice with bilobalide on amino acid levels in the brain, we determined the levels of aspartate, glutamate, serine, glutamine, glycine, taurine and GABA in the hippocampus, striatum and cortex. Bilobalide (3 mg/kg/day) was administered orally to 4-week-old mice for 40 days. Bilobalide treatment resulted in a significant increase in the levels of glutamate, aspartate, gamma-aminobutyric acid (GABA), and glycine in the hippocampus of mice compared with the control. An increased level of glycine after bilobalide treatment was also detected in the striatum. In the cortex, bilobalide increased the GABA level, whereas it decreased the level of aspartate. These changes in the levels of various amino acids may be involved in the broad spectrum of pharmacological activities of the extract of Ginkgo biloba on the central nervous system.  相似文献   

3.
Neuroactive Amino Acids in Focally Epileptic Human Brain: A Review   总被引:3,自引:0,他引:3  
Studies of neuroactive amino acids and their regulatory enzymes in surgically excised focally epileptic human brain are reviewed. Concentrations of glutamate, aspartate and glycine are significantly increased in epileptogenic cerebral cortex. The activities of the enzymes, glutamate dehydrogenase and aspartate aminotransferase, involved in glutamate and aspartate metabolism are also increased. Polyamine synthesis is enhanced in epileptogenic cortex and may contribute to the activation of N-methyl-D-aspartate (NMDA) receptors. Nuclear magnetic resonance spectroscopy (NMRS) reveals that patients with poorly controlled complex partial seizures have a significant diminution in occipital lobe gamma aminobutyric acid (GABA) concentration. The activity of the enzyme GABA-aminotransaminase (GABA-T) which catalyzes GABA degredation is not altered in epileptogenic cortex. NMRS studies show that vigabatrin, a GABA-T inhibitor and effective antiepileptic, significantly increases brain GABA. Glutamate decarboxylase (GAD), responsible for GABA synthesis, is diminished in interneurons in discrete regions of epileptogenic cortex and hippocampus. In vivo microdialysis performed in epilepsy surgery patients provides measurements of extracellular amino acid levels during spontaneous seizures. Glutamate concentrations are higher in epileptic hippocampi and increase before seizure onset reaching potentially excitotoxic levels. Frontal or temporal cortical epileptogenic foci also release aspartate, glutamate and serine particularly during intense seizures or status epilepticus. GABA in contrast, exhibits a delayed and feeble rise in the epileptic hippocampus possibly due to a reduction in the number and/or efficiency of GABA transporters.  相似文献   

4.
The activities of Glutamate decarboxylase (GAD) and Gamma aminobutyric acid (GABA) were studied in three regions of rat brain in heightened neuronal activity resulting in convulsions by Leptazol. These enzymes were studied in preconvulsive, convulsive and post convulsive phases. The activity of GAD decreases significantly in the preconvulsive phase in all the three regions of brain followed by a significant increase during the convulsive and post convulsive phase in cerebral cortex and cerebellum. The activity of GABA-T decreases maximal during the preconvulsive phase followed by convulsive phase. The activity of this enzyme tended to increase to control values when the postconvulsive phase was reached. Therefore, it is suggested that the concomitant decrease of GAD activity and GABA concentration, is probably an important factor in the onset of convulsions.  相似文献   

5.
We have previously shown that short-lasting reduction of cerebral blood flow by bilateral clamping of carotid arteries (BCCA) results in long-lasting increase in regional GABA concentration and decrease in seizure susceptibility in rats. In the present experiments, the effect of BCCA on GABA turnover and the enzymes involved in GABA synthesis and degradation were studied in rats. Regional GABA turnover was measured by means of GABA accumulation induced by the GABA-transaminase (GABA-T) inhibitor aminooxyacetic acid (AOAA). Fourteen days after BCCA, GABA turnover was significantly increased in hippocampus, substantia nigra and cortex, but not different from sham-operated controls in several other brain regions, including striatum, hypothalamus and cerebellum. The activity of glutamate decarboxylase (GAD) measured ex vivo did not show any changes in investigated structures, while the activity of GABA-T was slightly increased in hippocampus. The increased GABA turnover in some brain regions may explain our previous findings of increased GABA content in these brain regions and decreased sensitivity of BCCA treated animals to the GABAA-receptor antagonist bicuculline.  相似文献   

6.
The amino acids glutamate, aspartate, gamma-aminobutyric acid (GABA), and glutamine were measured as their dansyl derivatives in whole brain and specific brain regions by a sensitive double-labelling technique at various times during the development of hypoglycaemic encephalopathy. Hypoglycaemia was induced by administration of insulin (100 i.u./kg) to 24-h fasted rats. No significant changes in glutamate, GABA, or glutamine were detected in whole brain at any time up to and including the onset of hypoglycaemic convulsions. In cerebral cortex, however, GABA levels were reduced to 65% or normal prior to the appearance of neurological symptoms of hypoglycaemia. Onset of symptoms (severe catalepsy and loss of righting reflex, but before the onset of convulsions) was accompanied by marked decreases of glutamate and glutamine in striatum and hippocampus. These regions, in addition to cerebral cortex, show the greatest vulnerability to hypoglycaemic insult, according to previous anatomical studies. Aspartate levels were significantly increased (p less than 0.01) in the cerebral cortex of convulsing animals, confirming a previous report. No changes were detectable in any of the amino acids studied in medulla-pons at any time during the progression of hypoglycaemia. Cerebral cortex and striatum showed a selective net loss of amino acids (2.2 and 3.5 mumol/g. respectively) prior to the onset of insulin-hypoglycaemic convulsions.  相似文献   

7.
An elevation in cerebral GABA level (65%) is observed after administration of an anticonvulsant, sodium propyl 2-pentene-2 oate, a branched chain fatty acid, comformationally restricted GABA analogue, competitive inhibitor of GABA-T in regard to GABA. The concentration of GABA increases in some regions i.e. substantia nigra, frontal and temporal cortex, cerebellum and olfactory bulbs. The GABA level remains unchanged in caudate nucleus, hippocampus and occipital cortex. Results are discussed comparatively to the effect of sodium n-dipropylacetate.  相似文献   

8.
The levels of the two isoforms of glutamate decarboxylase (GAD) were measured in 12 regions of adult rat brain and three regions of mouse brain by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting with an antiserum that recognizes the identical C-terminal sequence in both isoforms from both species. In rat brain the amount of smaller isoform, GAD65, was greater than that of the larger isoform, GAD67, in all twelve regions. GAD65 ranged from 77-89% of total GAD in frontal cortex, hippocampus, hypothalamus, midbrain, olfactory bulb, periaqueductal gray matter, substantia nigra, striatum, thalamus and the ventral tegmental area. The proportion of GAD65 was lower in amygdala and cerebellum but still greater than half of the total. There was a strong correlation between total GAD protein and GAD activity. In the three mouse brain regions analysed (cerebellum, cerebral cortex and hippocampus) the proportion of GAD65 (35,47, and 51% of total GAD) was significantly lower than in the corresponding rat-brain regions. The amount of GAD67 was greater than the amount of GAD65 in mouse cerebellum and was approximately equal to the amount of GAD65 in mouse cerebral cortex and hippocampus.  相似文献   

9.
In this study, we investigated the role of GABAergic and glutamatergic systems in the anticonvulsant action of 3-alkynyl selenophene (3-ASP) in a pilocarpine (PC) model of seizures. To this purpose, 21 day-old rats were administered with an anticonvulsant dose of 3-ASP (50 mg/kg, per oral, p.o.), and [(3)H]γ-aminobutyric acid (GABA) and [(3)H]glutamate uptakes were carried out in slices of cerebral cortex and hippocampus. [(3)H]GABA uptake was decreased in cerebral cortex (64%) and hippocampus (58%) slices of 21 day-old rats treated with 3-ASP. In contrast, no alteration was observed in [(3)H]glutamate uptake in cerebral cortex and hippocampus slices of 21 day-old rats that received 3-ASP. Considering the drugs that increase synaptic GABA levels, by inhibiting its uptake or catabolism, are effective anticonvulsants, we further investigated the possible interaction between sub-effective doses of 3-ASP and GABA uptake or GABA transaminase (GABA-T) inhibitors in PC-induced seizures in 21 day-old rats. For this end, sub-effective doses of 3-ASP (10 mg/kg, p.o.) and DL-2,4-diamino-n-butyric acid hydrochloride (DABA, an inhibitor of GABA uptake--2 mg/kg, intraperitoneally; i.p.) or aminooxyacetic acid hemihydrochloride (AOAA; a GABA-T inhibitor--10 mg/kg, i.p.) were co-administrated to 21 day-old rats before PC (400 mg/kg; i.p.) treatment, and the appearance of seizures was recorded. Results demonstrated that treatment with AOAA and 3-ASP or DABA and 3-ASP significantly abolished the number of convulsing animals induced by PC. The present study indicates that 3-ASP reduced [(3)H]GABA uptake, suggesting that its anticonvulsant action is related to an increase in inhibitory tonus.  相似文献   

10.
The aim of the study was to investigate neurochemical changes in a kainic acid (KA; 10 mg/kg, s.c.)-induced spontaneous recurrent seizure model of epilepsy, 6 months after the initial KA-induced seizures. The neuronal markers of cholinergic and gamma-aminobutyric acid (GABA)ergic systems, i.e. choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) activities, and a marker for neuropeptide, i.e. level of somatostatin, have been investigated. The brain regions investigated were the hippocampus, amygdala/piriform cortex, caudate nucleus, substantia nigra and the frontal, parietal, temporal and occipital cortices. Six months after KA injection, reduced ChAT activity was observed in the amygdala/piriform cortex (47% of control; p<0.001), increased ChAT activity in the hippocampus (119% of control; p<0.01) and normal ChAT activity in the other brain regions. The activity of GAD was significantly increased in all analysed cortical regions (between 146 and 171% of control), in the caudate nucleus (144% of control; p<0.01) and in the substantia nigra (126% of control; p<0.01), whereas in the amygdala/piriform cortex, the GAD activity was moderately lowered. The somatostatin level was significantly increased in all cortical regions (between 162 and 221% of control) as well as in the hippocampus (119% of control), but reduced in the amygdala/piriform cortex (45% of control; p<0.01). Six months after KA injection, the somatostatin:GAD ratio was lowered in the amygdala/piriform cortex (49% of control) and in the caudate nucleus (41% of control), whereas it was normal in the hippocampus and moderately increased in the cortical brain regions. A positive correlation was found between seizure severity and the reduction of both ChAT activities and somatostatin levels in the amygdala/piriform cortex. The results show a specific pattern of changes for cholinergic, GABAergic and somatostatinergic activities in the chronic KA model for epilepsy. The revealed data suggest a functional role for them in the new network that follows spontaneous repetitive seizures.  相似文献   

11.
Abstract— Aminooxyacetic acid (AOAA) administration produced an increase in γ-aminobutyric acid (GABA) levels in regions of cerebral cortex, subcortex and cerebellum. In some cortical areas studied, the maximal effect was observed with 25 mg/kg AOAA; in other regions GABA levels were increased further with 50 and 75 mg/kg AOAA. Pretreatment with 25 mg/kg AOAA effectively inhibited GABA:2-oxoglutarate aminotransferase (GABA-T) and partially inhibited glutamic acid decarboxylase (GAD) activity in regions of cerebral cortex. However, this dose did not affect GAD activity in substantia nigra while GABA-T in the nigra and in the cerebellum was only partially inhibited. In both cortical and subcortical areas, the increase in GABA produced by 25 mg/kg of AOAA was linear. In contrast, l -glutamic acid-hydrazide (GAH) had no effect in the pyriform and cingulate cortex for the first 60 min after injection, and produced a biphasic GABA increase in caudate and substantia nigra over a 4 h period. Results suggest that GAH and AOAA affect regional GABA metabolism differentially and that there are several problems associated with estimating absolute GABA synthesis rates by measuring the rate or GABA accumulation after inhibition of GABA catabolism with these agents. This approach, however, may provide an easily obtainable indication of whether drugs or other manipulations are altering GABA synthesis in a given region.  相似文献   

12.
Although alcoholic intoxication is attributed to its pharmacological effects on the cell membranes in brain, the rapid metabolic utilisation of the same alters the metabolism of brain affecting the metabolism of glutamate and GABA which have varied metabolic roles besides serving a major proportion of synaptic activity. A study on the effects of ethanol, both acute and short-term, on glutamate (glu) and GABA metabolism in various regions of rat brain was carried out. Increased activities of glutamic acid decarboxylase (GAD) and aspartic acid aminotransferase (AST) in all brain regions, but decreased activity of glutamic acid dehydrogenase (GDH) in cerebral cortex (CC) and cerebellum (CB) following ethanol administration in brain was observed. Differential effects of ethanol were also obtained on the contents of glu and aspartate (asp), which were increased in CC, CB, and brain stem (BS) regions, as opposed to GABA content, which, although found to increase in acute toxicity, showed a decrease in all of the above brain regions in short-term toxicity. It is concluded that the above changes in glu, asp and GABA represent the consequences of metabolic utilization of alcohol in the brain, probably more a state of cerebral excitation than depression, and the changes may be a compensatory phenomenon.  相似文献   

13.
Because previous work showed that in the newborn brain, but not in the adult brain, glutamate decarboxylase (GAD) is notably susceptible to heat, we have studied the possible involvement of GAD inhibition in febrile convulsions and the related changes in gamma-aminobutyric acid (GABA) content. Rats of different ages were subjected to hyperthermia, and GAD activity was determined in brain homogenates by measuring the release of 14CO2 from labeled glutamate and by measuring the formation of GABA. The latter method gave considerably lower values than the former in the youngest rats, and was considered more reliable. With this method, we found a 37-48% inhibition of GAD activity in rat pups 2-5 days old, which showed febrile seizures at progressively higher body temperatures, whereas in 10- and 15-day-old animals, which did not show convulsions, GAD activity was not affected by hyperthermia. Whole-brain GABA levels, however, did not change at any age. In contrast to GAD, choline acetyltransferase and lactic dehydrogenase activities were not altered by hyperthermia at any of the ages studied. These results suggest that a decreased efficiency of the inhibitory neurotransmission mediated by GABA, consequent to the inhibition of GAD activity, may be a factor related to febrile convulsions.  相似文献   

14.
The levels of the neurotransmitter amino acids glutamate, aspartate, and GABA were determined in different brain regions during ischemia and post-ischemic recirculation periods using the unilateral carotid artery occlusion model of stroke in gerbils. The levels of glutamate, aspartate and GABA in ischemic hemisphere were increased significantly by 10 min of ischemia and later declined with time. Reperfusion for 30 min following 10 min. of ischemia further enhanced the levels of glutamate and aspartate. Increase in GABA levels were found during early periods of reperfusion. Regional variations in the changes of amino acids' levels were noticed following ischemia. Hippocampus showed the highest increase in glutamate levels followed by striatum and cerebral cortex. Aspartate levels in striatum and hippocampus increased during 10 min ischemia (46% and 30%) and recirculation (70% and 79%), whereas in cerebral cortex the levels were doubled only during recirculation. Ischemia induced elevations of GABA levels were observed in cerebral cortex (68%) and in hippocampus (30%), and the levels were normalized during recirculation. No changes in GABA levels were found in striatum. It is suggested that the large increase in the levels of excitatory neurotransmitter amino acids in brain regions specially in hippocampus during ischemia and recirculation may be one of the causal factors for ischemic brain damage.  相似文献   

15.
The effects of aminooxyacetic acid (AOAA), a transaminase inhibitor, and 2-oxoglutarate, a precursor to glutamate by the activity of aspartate aminotransferase (AAT), on slices of rat medulla oblongata, cerebellum, cerebral cortex, and hippocampus were studied. The slices were superfused and electrically stimulated. There was a Ca2+-dependent stimulus-evoked release of endogenous glutamate, gamma-aminobutyric acid (GABA), and beta-alanine in all regions examined. AOAA (10(-4) and 10(-3) M) decreased the release of glutamate in the medulla oblongata and cerebellum but not in the hippocampus. L-Canaline, a specific inhibitor of ornithine aminotransferase, did not affect the glutamate release in the medulla. 2-Oxoglutarate (10(-3) M) increased the release of glutamate in the medulla oblongata and cerebellum but not in the cerebral cortex and hippocampus. Treatment with AOAA (10(-4) M) almost abolished the activities of AAT in all regions studied. AOAA (10(-4) and 10(-3) M) increased the stimulus-evoked release of GABA in the cerebellum, cerebral cortex, and hippocampus, whereas the stimulus-evoked release of beta-alanine was decreased by this agent in all regions studied. These results suggest the participation of AAT in the synthesis of the transmitter glutamate in the medulla oblongata and cerebellum of the rat.  相似文献   

16.
GABA is the principal neurotransmitter of the mammalian circadian system, and its activity is subject to diurnal and circadian variations, with maximal values in hypothalamic turnover, content and binding during the night. In this study we have examined rhythms in the proconvulsant effect of inhibition of glutamate decarboxylase (GAD) in hamsters (Mesocricetus auratus) as well as the anticonvulsant effect of androsterone, a neurosteroid that positively modulates the GABA(A) receptor. Administration of 10-60 mg/Kg of 3-mercaptopropionic acid (3-MPA, a GAD inhibitor) induced convulsions that were analyzed by an ad-hoc severity scale, with a lower sensitivity threshold at 24:00 h. Moreover, the latency for first and maximal convulsive response times was significantly lower at night. A similar temporal profile (maximal effect at midnight) was found for picrotoxin-induced seizures. Androsterone (40 mg/Kg) completely inhibited 3-MPA-induced tonic/clonic seizures at 12:00 h, while it had a partial inhibitory effect at 24:00 h. These results support the importance of temporal regulation of GABAergic modulation in the central nervous system.  相似文献   

17.
We evaluated whether regional differences in the magnitude of glutamate, gamma-aminobutyric acid (GABA), and glycine release could explain why some regions are vulnerable to ischemia whereas others are spared. By means of the microdialysis technique, the temporal profile of ischemia-induced changes in extracellular levels of glutamate, GABA, and glycine was compared in regions that demonstrate differing susceptibilities to a 10- and 20-min ischemic insult (dorsal hippocampus, anterior thalamus, somatosensory cortex, and dorsolateral striatum). The degree of ischemia (as established by local cerebral blood flow reduction) and the magnitude of histopathological neuronal damage were also evaluated in these regions. The blood flow reduction was severe and uniform in all regions; however, the histopathological outcome illustrated a different pattern. Whereas the CA1 sector of the hippocampus was severely damaged, the thalamus and cortex were relatively spared from both 10 and 20 min of ischemia. Striatal neurons were resistant to a 10-min insult but severely damaged after 20 min of ischemia. Ischemia-induced increase in glutamate and GABA content were of a similar magnitude and temporal profile in all four brain regions. A uniform increase in extracellular glycine levels was also observed in all four brain structures. The postischemic response, however, was different. Glycine levels remained twofold higher than baseline in the hippocampus but fell to baseline in the cortex and thalamus after both 10- and 20-min insults. In the striatum, glycine levels returned to baseline after 10 min of ischemia but remained relatively high after a 20-min insult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of DL-penicillamine (DL-PeA), hydrazine and toxopyrimidine (TXP, 2-methyl-6-amino-5-hydroxymethylpyrimidine) on gamma-aminobutyric acid (GABA) metabolism in mouse brain were studied. All these compounds inhibited the activity of glutamate decarboxylase [EC 4.1.1.15] (GAD) and slightly inhibited that of 4-aminobutyrate: 2-oxoglutarate aminotransferase [EC 2.6.1.19] (GABA-T). In contrast, very different effects were observed on GABA levels; hydrazine caused a marked increase, DL-PeA had no effect, and TXP caused a slight decrease in the content of the amino acid. These results could be described by an equation which related the excitable state to changes in the flux of the GABA bypass. Since the values obtained from the equation clearly reflect the seizure activity, it is suggested that the decreased GABA flux might be a cause of convulsions induced by these drugs.  相似文献   

19.
Abstract— The effect of diazepam and pentobarbital on γ-aminobutyric acid (GABA) levels, the aminooxyacetic acid (AOAA)-induced accumulation of GABA, and the in vitro activity of l -glutamate 1-carboxyl-lyase (EC 4.1.1.15) [GAD] were studied in various regions of rat brain. Diazepam increased GABA levels in the substantia nigra, diminished the AOAA-induced accumulation of GABA in the caudate nucleus, cingulate, parietal and entorhinal cortex and had no effect on GABA accumulation in the pyriform and cerebellar cortex. After pentobarbital, GABA levels were elevated in the caudate nucleus but decreased in the parietal and pyriform cortex; the AOAA-induced accumulation of GABA also diminished in all cortical regions studied. No correlation was found between the apparent changes in GABA synthesis, as estimated by accumulation after inhibition of 4-aminobutyrate-2-oxoglu-tarate (EC 2.6.1.19) [GABA-T] with AOAA, and the changes in GABA levels induced by these drugs. The reduction in AOAA-induced GABA accumulation after diazepam and pentobarbital treatment was most pronounced in regions which showed the greatest accumulation of GABA after AOAA administration. Neither diazepam nor pentobarbital administration affected the activity of GAD in homogenates of cingulate cortex. Chlorpromazine, at a dose which decreased spontaneous activity, enhanced the AOAA-induced GABA accumulation in the cingulate cortex, suggesting that drug-induced sedation is not necessarily associated with decreased GABA synthesis. While regional differences were observed in the effects of diazepam and pentobarbital on GABA synthesis, both agents appear to inhibit GABA synthesis in vivo and both do so, in at least some brain areas, at subsedative doses.  相似文献   

20.
Acute and chronic ammonia toxicity was produced in the mice by intraperitoneal injection of ammonium chloride (200 mg/kg) and by exposure of mice to ammonia vapours (5% v/v) continuously for 2 days and 5 days respectively. The ammonia content was elevated in the cerebellum, cerebral cortex and brain stem and in liver. In acute ammonia intoxication there was a decrease in the monoamine oxidase (MAO) activity in all the three regions of brain. In chronic ammonia toxicity (2 days of exposure) a significant increase in the activity of MAO was observed in the cerebral cortex while in cerebellum and brain stem there was a significant decrease. In cerebral cortex and cerebellum there was a rise in the activity of MAO as a result of exposure to ammonia vapours for 5 days. A significant decrease was observed in the activity of glutamate decarboxylase (GAD) in all the three regions of the brain both in acute and chronic ammonia toxicity (2 days). There was a decrease in the activity of this enzyme only in the cerebral cortex in the animals exposed to ammonia for 5 days. The activity of GABA-aminotransferase (GABA-T) showed a significant rise in cerebellum and a fall in the brain stem in acute ammonia toxicity. In chronic ammonia toxicity GABA-T showed a rise in all the three regions of brain. Chronic ammonia toxicity produced a significant decrease in the content of glutamate in all the three regions without a significant change in the content of aspartate. GABA and glutamine. The content of alanine increased in all the three regions of brain under these experimental conditions. The ratio of glutamate + aspartate/GABA and glutamate/glutamine showed a decrease in all the three regions as a result of ammonia toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号