首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dictyostelium discoideum slugs (pseudoplasmodia) were disaggregated and the resynthesis of developmentally regulated plasma membrane proteins examined. The synthesis of the majority of these proteins was inhibited when cells were overlaid with Cellophane and maintained as a monolayer. However, cell contact and movement did occur under the Cellophane. The inhibition of differentiation may result from the inability of the cells to organise specifically into multicellular aggregates. The addition of cyclic AMP (1–5 mM) induced the synthesis of certain developmentally regulated plasma membrane proteins in cells overlaid with Cellophane. Hence, this confirms other work showing that cyclic AMP is required for at least some post-aggregative gene expression. Specific cell organisation and interactions are apparently required for an increase in or maintenance of intracellular cyclic AMP levels.  相似文献   

2.
Abstract. Differentiation of Dictyostelium discoideum cells in submerged monolayers was studied and compared with in vivo development. The accumulation patterns of three developmentally regulated enzymes in cells of strain V12M2 differentiating in vivo on Millipore Filters or in vitro in monolayers at high cell-densities were found to be similar. Moreover, stalk cell formation occurred at approximately the same time in high or low cell density monolayers as it did during normal differentiation. These observations suggest that the timing of differentiation in vitro and in vivo is similar.
In vitro stalk cell formation requires exogenous cyclic AMP, and in its absence, the accumulation patterns of the three developmentally regulated enzymes are alterd. At low cell densities, in vitro stalk cell induction also requires a differentiation-inducing factor (DIF). The addition or removal of cyclic AMP or DIF during development under these conditions revealed the sequence of these two requirements. Cyclic AMP is not required for stalk cell induction for the first 8 hours of incubation, but thereafter, a gradually increasing proportion of cells are induced by cyclic AMP. After a brief delay there is a period of induction by DIF, and this period corresponds approximately to the period of DIF accumulation during in vivo development. The two induction events are clearly separate, in that each inducer can act in the absence of the other, as long as cyclic AMP induction precedes DIF induction. Cyclic AMP is only required at a concentration of 40 μM when added 8 hours after the beginning of the differentiation period.  相似文献   

3.
A photosensitive, radioactive analogue of cyclic adenosine monophosphate, 8-azido-adenosine 3′,5′-[32P]monophosphate (8-N3-cyclic AMP), was used to label the cyclic AMP binding proteins of Dictyostelium discoideum. During development cytosolic proteins appear which are specifically labeled by the photoaffinity agent. The proteins are developmentally regulated since they are only found in starved, developing cells. Unlabeled cyclic AMP competes specifically with the labeled analogue for protein binding sites in contrast to unlabeled 5′-AMP which does not compete. A mutant which develops spores but is deficient in stalk cell production produces a different set of cyclic AMP binding proteins from the parent strain.  相似文献   

4.
5.
Differences in the cyclic AMP-dependent plasma membrane phosphorylation system of undifferentiated and differentiated L6 myogenic cells have been detected. Endogenous plasma membrane protein phosphorylation in undifferentiated L6 myoblasts was stimulated more than three fold by 5 x 10(-5) M cyclic AMP, whereas no statistically significant cyclic AMP-dependent phosphorylation of endogenous plasma membrane proteins was observed in differentiated L6 cells. In undifferentiated cells cyclic AMP promoted the phosphorylation of several proteins, the most prominent of which had a molecular weight of 110,000. In differentiated cells cyclic AMP did not selectively promote the phosphorylation of specific plasma membrane proteins. Both differentiated and undifferentiated L6 cells, however, contain a cyclic AMP-dependent protein kinase capable of catalyzing the phosphorylation of exogenous substrates, such as histone f2b. Therefore, the data show that differentiation in L6 cells is associated with a selective change in the activity of a plasma membrane cyclic AMP-dependent protein kinase which employs endogenous membrane proteins as substrate.  相似文献   

6.
7.
The activity of glucan synthetase increased dramatically during encystment of Polysphondylium pallidum cells. The majority of activity was present in purified plasma membranes. Activity, measured as glucose incorporation from UDPG into NaOH-insoluble glucan, increased 30–40 fold in the membranes. Increases in activity within the cells preceded plasma membrane increases and the enzyme appeared to be rapidly transported to the plasma membrane. Intracellular activity was relatively low. When cells were incubated with UDPG and when phloretin was included to inhibit glucose uptake, no NaOH-insoluble glucan was synthesized. Hence, the UDPG-binding site was not exposed at the cell-surface. When the NaOH-insoluble glucan was digested with endo--1,4-glucanase the products were cellobiose and glucose. The glucan could also be precipitated from Schweizer's reagent with acetic acid. These results suggest that the glucan contained predominantly -1,4-linkages and may be cellulose. Experiments with cycloheximide confirmed that protein synthesis was required for encystment. Labeling of cells with [1-14C]-acetate showed that the synthesis of certain plasma membrane proteins was developmentally regulated. A number of proteins (e.g., myosin heavy chains and actin) were synthesized during the lag phase and their synthesis was subsequently reduced or ceased altogether. Immediately prior to the commencement of cyst wall formation seven new plasma membrane proteins were synthesized. These proteins were not detected intracellularly, indicating rapid transfer to the plasma membrane. The possible relationship between the seven developmentally regulated proteins and a postulated multi-enzyme-complex involved in cellulose synthesis is discussed. Their synthesis may be related to the increase in particles in the outer leaflet of the plasma membrane observed during encystment with freeze-etching (G.W. Erdos and H.R. Hohl, 1980, Cytobios, 29, 7–16).  相似文献   

8.
Sugars and other energy sources were found to lower intracellular concentrations of adenosine 3':5'-monophosphate (cyclic AMP) in strains of Escherichia coli and Salmonella typhimurium which were deficient for cyclic AMP phosphodiesterase. This effect required the presence of the specific transport system responsible for entry of that sugar into the cell and depended on the intracellular catabolic enzymes. Metabolizable sugars were more effective than nonmetabolizable sugars in reducing cellular cyclic AMP levels, and this reduction was blocked partially by uncouplers of oxidative phosphorylation. Electron donors such as lactate and ascorbate plus phenazine methosulfate reduced internal cyclic AMP levels in bacterial membrane vesicles which had been preloaded with the cyclic nucleotide. Uncouplers of oxidative phosphorylation, but not arsenate, blocked the energy-stimulated loss of intravesicular cyclic AMP. Employing intact cells, sugars were shown to have two primary effects on cyclic AMP metabolism: (a) they inhibited net synthesis of the cyclic nucleotide while promoting its degradation, and (b) they stimulated efflux of cyclic AMP into the extracellular fluid. While the former effect was elicited by metabolizable and nonmetabolizable sugars alike, stimulation of cyclic nucleotide excretion was only observed with metabolizable sugars. The results suggest that the extrusion of cyclic AMP from the bacterial cell is energy-dependent and is driven by an energized membrane state.  相似文献   

9.
Differences in the cyclic AMP-dependent plasma membrane phosphorylation system of undifferentiated and differentiated L6 myogenic cells have been detected. Endogenous plasma membrane protein phosphorylation in undifferentiated L6 myoblasts was stimulated more than three fold by 5 × 10−5 M cyclic AMP, whereas no statistically significant cyclic AMP-dependent phosphorylation of endogenous plasma membrane proteins was observed in differentiated L6 cells. In undifferentiated cells cyclic AMP promoted the phosphorylation of several proteins, the most prominent of which had a molecular weight of 110,000. In differentiated cells cyclic AMP did not selectively promote the phosphorylation of specific plasma membrane proteins. Both differentiated and undifferentiated L6 cells, however, contain a cyclic AMP-dependent protein kinase capable of catalyzing the phosphorylation of exogenous substrates, such as histone f2b. Therefore, the data show that differentiation in L6 cells is associated with a selective change in the activity of a plasma membrane cyclic AMP-dependent protein kinase which employs endogenous membrane proteins as substrate.  相似文献   

10.
Previous work has shown that cells developing at high density release a low-molecular-weight factor that can induce isolated Dictyostelium discoideum amoebae of strain V12M2 to differentiate into stalk cells in the presence of cyclic AMP. We now show that this differentiation-inducing factor, called DIF, can be extracted from cells during normal development and that its production is strongly developmentally regulated. DIF is not detectable in vegetative cells but rises dramatically after aggregation to reach a peak during slug migration. DIF levels are very low in two mutants defective in aggregation. The postaggregative synthesis of DIF is stimulated by the addition of extracellular cyclic AMP. We propose that DIF is a morphogen controlling prestalk cell differentiation.  相似文献   

11.
Sertoli cells are hormonally regulated by follicle-stimulating hormone (FSH) acting upon a G-protein-linked cell surface FSH receptor. FSH increases intracellular cyclic AMP but the involvement of other signal transduction mechanisms including intracellular calcium in FSH action are not proven. Using freshly isolated rat Sertoli cells we measured cytosolic free ionized calcium levels by dual-wavelength fluorescence spectrophotometry using the calcium-sensitive fluorescent dye Fura2-AM. The cytosolic calcium concentration in unstimulated Sertoli cells was 89 +/- 2 nM (n = 151 experiments) and was markedly increased by either calcium channel ionophores (ionomycin, Bay K8644) or plasma membrane depolarization consistent with the presence of voltage-sensitive and -independent calcium channel in Sertoli cell membranes. Ovine FSH stimulated a specific, sensitive (ED50, 5.0 ng of S-16/ml), and dose-dependent (maximal at 20 ng/ml) rise in cytosolic calcium commencing within 60 s to reach levels of 192 +/- 31 nM after 180 s and lasting for at least 10 min. The effect of FSH was replicated by forskolin, cholera toxin, and dibutyryl cyclic AMP, suggesting that cyclic AMP may mediate the FSH-induced rise in cytosolic calcium. The FSH-induced rise in cytosolic calcium required extracellular calcium and was abolished by calcium channel blockers specific for dihydropyridine (verapamil, nicardipine), nonvoltage-gated (ruthenium red) or all calcium channels (cobalt). Thus FSH action on Sertoli cells involves a specific, rapid, and sustained increase in cytosolic calcium which requires extracellular calcium and involves both dihydropyridine-sensitive, voltage-gated calcium channels and voltage-independent, receptor-gated calcium channels in the plasma membranes of rat Sertoli cells. The replication by cyclic AMP of the effects of FSH suggests that calcium may be a signal-amplification or -modulating mechanism rather than an alternate primary signal transduction system for FSH in Sertoli cells.  相似文献   

12.
A striking correlation exists in the literature between cell regulatory phenomena mediated by cyclic AMP and the presence of filamentous proteins. By filamentous proteins is meant microtubules, microfilaments, and actinlike protein, three general classes of proteins which can be grouped on structural and functional grounds. These proteins comprise a significant portion of the protein of all eucaryotic cells and appear to be evolutionary related and quite constant. The cell events discussed include regulation of growth, differentiation, responses to hormones, secretion, including neurotransmitter release, and membrane permeability. These phenomena share a role for cyclic AMP and an involvement of filamentous proteins. The filamentous protein model for cyclic AMP-mediated cell regulatory mechanisms is proposed, in which a common aspect of many cyclic AMP-mediated processes is the regulation by cyclic AMP of filamentous protein function. The filamentous proteins would, by controlling some aspect of motility in the cell, provide the necessary and sufficient means to effect the cell response regulated by cyclic nucleotide levels. A further aim of this article is to bring attention to the emerging importance of filamentous proteins in biological sciences.  相似文献   

13.
Cytosolic cyclic AMP-binding capacity and cyclic AMP-dependent protein kinase activity have been studied in relation to differentiation and maturation of rabbit bone marrow erythroblasts. Using cells fractionated by velocity sedimentation at unit gravity, it was found that both activities decreased in dividing cells when calculated in terms of cell number but remained constant per cell volume. After the final cell division, cyclic AMP-dependent protein kinase activity did not change further, whereas cyclic AMP-binding capacity declined. There were no qualitative, but only quantitative, changes in the cyclic AMP-binding proteins that are present in the cytosol of developing erythroblasts. In the immature cells, the apparent KD for the interaction of binding proteins with cyclic AMP was 4 X 10(-8) M. The data suggest that changes in cyclic AMP-binding activity during differentiation of erythroid cells are due both to changes in the amount of binding proteins and in their affinity for cyclic AMP. Plasma membranes of erythroblasts were also able to bind cyclic AMP but only in dividing cells.  相似文献   

14.
Pretreatment of proliferating D. discoideum amoebae with 10 mM butyrate for at least 8 h (one duplicating time) induced a reversible and dose dependent premature expression of several developmental parameters when the cells were starved in the absence of the fatty acid. The aggregative phase of the morphogenetic cycle was reduced in 2 h and the appearance of mature fruiting bodies and spores took place 4 h earlier as a result of butyrate pretreatment. Some developmentally regulated proteins, such as contact-sites A, cell surface lectins and cyclic AMP phosphodiesterase were also expressed 2 h earlier in butyrate pretreated cells than in controls. The level of extracellular cyclic AMP was reduced in butyrate pretreated cells, while other parameters of cyclic AMP metabolism were not affected. Butyrate also caused a partial inhibition of growth and the hyperacetylation of histone H4 in growing amoeba. These results suggest that butyrate acts as an inducer of differentiation in D. discoideum and can therefore be used as an experimental tool in order to explore regulatory mechanisms operating in slime mold differentiation.Abbreviations MES 2-N-morpholinoethanesulfonate - EDTA ethylendiaminotetracetate - TCA trichloroacetate - DTT dithiothreitol - SDS sodium dodecylsulfate  相似文献   

15.
Gonadotropin binding and stimulation of cyclic adenosine 3':5'-monophosphate (cyclic AMP) formation and testosterone synthesis were studied in collagenase-dispersed interstitial cells from the adult rat testis. Binding of 125I-human chorionic gonadotropin (hCG) by isolated Leydig cells was of high affinity (Ka = 10(10) M-1) and low capacity, equivalent to approximately 6000 sites/cell. The binding data were consistent with the presence of a single order of receptors, with no interaction between binding sites. Stimulation of testosterone synthesis by increasing concentrations of hCG was completely dissociated from changes in cyclic AMP formation, and maximum activation of steroidogenesis was induced by hCG concentrations which had no effect upon cyclic AMP production. Kinetic analysis of gonadotropin-induced responses in dispersed Leydig cells also showed a marked dissociation between steroidogenesis and cyclic nucleotide formation. Low concentrations of hCG caused maximum stimulation of testosterone production which was not accompanied by a rise in cyclic AMP formation at any time after addition of gonadotropin. Higher concentrations of hCG caused marked elevations of cyclic AMP at progressively earlier time intervals, but did not alter the 20 to 30 min lag period required for induction of testosterone synthesis. These observations indicated that occupancy of gonadotropin receptors occurs over a much wider range of hCG concentration than that required for maximum steroidogenesis.  相似文献   

16.
Secretion of spore coat proteins from the prespore secretory vesicles (PSVs) in Dictyostelium discoideum is a signal mediated event that underlies terminal cell differentiation, and represents an important case of developmentally regulated secretion. In order to study the biochemical mechanisms that govern the regulated fusion of the PSVs with the plasma membrane and the subsequent secretion of their cargo, we purified this organelle from prespore cells. Analysis of protein extracts of highly purified PSVs indicated that, in addition to the cargo of structural spore coat proteins, many more proteins are associated with the PSVs. Their identification is paramount to the understanding of the mechanism of regulated secretion in this system. In this study we have taken the first comprehensive proteomic approach to the analysis of an entire, previously uncharacterized, organelle, with the goal of identifying the major proteins associated with the PSVs. We show that in addition to the structural spore coat proteins, the PSVs contain the enzymes needed for proper spore coat assembly (thioredoxin 2 and 3), regulatory proteins which we predict receive and transduce the developmental signal for secretion (rab7 GTPase, PI-3 kinase, NDP kinase and the calcium binding proteins calfumirin-1 and calreticulin) as well as proteins that interact with the cytoskeleton to mediate movement of the PSVs to the plasma membrane (actin binding proteins coactosin and profilin 1). In addition, the results suggest that proteins can play multiple roles in the cell, and that protein function can be dictated in part by subcellular localization. The identification of the PSV proteins is allowing us to develop testable hypotheses about the roles of these proteins within the functional context of developmentally regulated secretion.  相似文献   

17.
Forskolin, an activator of adenylate cyclase, stimulates adrenocorticotropin (ACTH) release and increases proopiomelanocortin mRNA levels in anterior pituitary cells by enhancing cyclic AMP (cAMP)-dependent protein kinase activity. The phorbol ester phorbol 12-myristate 13-acetate (PMA) evokes these same responses from anterior pituitary cells by activating protein kinase C. Both protein kinases most likely induce their cellular effects by catalyzing the phosphorylation of specific proteins. To elucidate the mechanisms by which cAMP-dependent protein kinase and protein kinase C promote ACTH secretion and synthesis, the phosphoproteins regulated by forskolin and PMA were identified in the cell line AtT-20, which consists of a homogeneous population of corticotrophs. Phosphoproteins were analyzed in different subcellular fractions by two-dimensional polyacrylamide gel electrophoresis and autoradiography. Forskolin increased phosphate incorporation into two proteins in the cytoplasmic fraction of 24 kilodaltons (kd) (pI 6.8) and 40 kd (pI 5.8), two proteins in the plasma membrane fraction of 32 kd (pI 8.3) and 60 kd (pI 8), and one protein in the nuclear fraction of 20 kd (pI 8.7). Insertion of the inhibitor of cAMP-dependent protein kinase into the AtT-20 cells, using a liposome technique, blocked the rise in phosphate incorporation induced by forskolin. PMA also stimulated phosphate incorporation into proteins in AtT-20 cells. PMA increased the phosphorylation of three cytoplasmic proteins of 25 kd (pI 7.6), 40 kd (pI 5.8), and 40 kd (pI 8.1) as well as two membrane proteins of 32 kd (pI 8.3) and 60 kd (pI 8) and one nuclear protein of 20 kd (pI 6.3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Myelination is a developmentally regulated process whereby myelinating glial cells elaborate large quantities of a specialized plasma membrane that ensheaths axons. The myelin sheath contains an unusual lipid composition in that the glycolipid galactosylceramide (GalC) and its sulfated form sulfatide constitute a large proportion of the total lipid mass. These glycolipids have been implicated in a range of developmental processes such as cell differentiation and myelination initiation, but analyses of mice lacking UDP-galactose:ceramide galactosyltransferase (CGT), the enzyme required for myelin galactolipid synthesis, have more recently demonstrated that the galactolipids more subtly regulate myelin formation. The CGT mutants display a delay in myelin maturation and axo-glial interactions develop abnormally. By interbreeding the CGT mutants with mice that lack myelin-associated glycoprotein, it has been shown that these specialized myelin lipids and proteins act in concert to promote axo-glial adhesion during myelinogenesis. The analysis of the CGT mutants is helping to clarify the roles myelin galactolipids play in regulating the development, and ultimately the function of the myelin sheath.  相似文献   

20.
The stimulation of DNA synthesis in quiescent, density-arrested BALB/c-3T3 cells by platelet-derived growth factor in plasma-supplemented medium was inhibited by the presence of isobutylmethylxanthine (IBMX) and cholera toxin, although neither IBMX or cholera toxin when used alone inhibited the stimulation of DNA synthesis. The cells were reversibly inhibited in mid G1 at a point 6 hr prior to the initiation of DNA synthesis. The inhibition of cell cycle traverse was associated with a 10-15 fold increase in cellular cyclic AMP concentration over basal levels. The reversal of this inhibition by removal of IBMX was correlated with a dramatic decrease in cyclic AMP levels. The traverse of G1 and the initiation of DNA synthesis after release from the cholera toxin and IBMX inhibition was dependent on the presence of plasma in the medium. Either somatomedin C (10-20 ng/ml) or insulin (10(-6)-10(-5) M) completely replaced the plasma requirement for late G1 progression and entry into S phase. Once the inhibited cells were released from the IBMX and cholera toxin block a subsequent increase in cyclic AMP did not prevent entry into S phase. The presence of cholera toxin alone inhibited the stimulation of human dermal fibroblasts. The elevation of intracellular cyclic AMP levels in the human dermal fibroblasts by cholera toxin was two to three fold greater than that found in the BALB/c-3T3 cells in the presence of cholera toxin and the IBMX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号