首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used an oriP-tk shuttle vector t determine the types of mutations induced in human cells by ethyl methanesulfonate (EMS), 1'-acetoxysafrole (AcOS), and N-benzoyloxy-N-methyl-4-aminoazobenzene (BzOMAB). Plasmid DNA was treated in vitro with mutagen and electroporated into human lymphoblastoid cells. After replication of the vector in human cells, plasmids were analyzed for mutations in the herpes simplex virus type 1 thymidine kinase gene. Ethyl methanesulfonate induced predominantly GC → AT transition mutations. Treatment of the shuttle vector with AcOS induced 5 of the 6 possible base substitution mutations, including GC → AT (32%) and AT → GC (14%) transition mutations, GC → TA (%), GC → CG (18%), and AT → TA (14%) transversion mutations, as well as a low frequency (9%) of −1 frameshift mutations at GC base pairs. Replication in human cells of DNA modified with BzOMAB yielded a significant increase (17-fold) in the frequency of deletion mutations relative to solvent-treated DNA. A majority (94%) of the point mutations induced by BzOMAB occurred at GC base pairs and were predomianntly GC → AT transitions (33%) and −1 frameshift (22%) mutations, with the remainder consisting mainly of transversions at GC base pairs (28%). The broad spectrum of base substitution mutations observed for AcOS and BzOMAB may indicate the frequent insertion of a variety of bases during replicative bypass of aralkylated bases in human cells.  相似文献   

2.
Malondialdehyde (MDA) is an endogenous genotoxic product of enzymatic and oxygen radical-induced lipid peroxidation whose adducts are known to exist in DNA isolated from healthy human beings. To evaluate the mutagenic potential of MDA in human cells, we reacted MDA with pSP189 shuttle vector DNA and then transfected them into human fibroblasts for replication. MDA induced up to a 15-fold increase in mutation frequency in the supF reporter gene compared with untreated DNA. Sequence analysis revealed that the majority of MDA-induced mutations occurred at GC base pairs. The most frequent mutations were large insertions and deletions, but base pair substitutions were also detected. MDA-induced mutations were completely abolished when the adducted shuttle vector was replicated in cells lacking nucleotide excision repair. MDA induction of large deletions and the apparent requirement for nucleotide excision repair suggested the possible involvement of a DNA interstrand cross-link as a premutagenic lesion. Indeed, MDA formed interstrand cross-links in duplex plasmids and oligonucleotides. Substrates containing the sequence 5'-d(CG) were preferentially cross-linked, consistent with the observation of base pair substitutions in 5'-d(CG) sites in the MDA-induced mutation spectrum. These experiments provide biological and biochemical evidence for the existence of MDA-induced DNA interstrand cross-links that could result from endogenous oxidative stress and likely have potent biological effects.  相似文献   

3.
To assess the contribution to mutagenesis of human DNA repair defects, the UV-irradiated shuttle vector plasmid pZ189 was propagated in fibroblasts derived from a xeroderma pigmentosum (XP) patient in DNA repair complementation group C. In comparison to results with DNA repair-proficient human cells (WI-38 VA13), UV-irradiated pZ189 propagated in the XP-C (XP4PA(SV)) cells showed fewer surviving plasmids and a higher frequency of mutated plasmids. Base sequence analysis of 67 mutated plasmids recovered from the XP-C cells revealed similar classes of point mutations and mutation spectrum, and a higher frequency of G:C to A:T transitions along with a lower frequency of transversions among plasmids with single or tandem mutations compared to plasmids recovered from the normal line. Most single-base substitution mutations (83%) occurred at G:C base pairs in which the 5'-adjacent base of the cytosine was thymine or cytosine. These results indicate that the DNA repair defects in XP-C, in comparison to data previously reported for XP-A, XP-D and XP-F, result in different UV survival and mutation frequency but in similar types of base substitution mutations.  相似文献   

4.
The DNA sequence changes for 54 mutations induced in human cells by the alkylating agent ethyl methanesulfonate are reported. The mutations were obtained by using a shuttle vector system with the bacterial lacI gene as the target. Of the 54 mutations obtained, 53 were G:C to A:T transitions.  相似文献   

5.
Human cancer, carcinogenic exposures and mutation spectra   总被引:5,自引:0,他引:5  
Exposure of mammalian cells to alkylating agents causes transfer of alkyl groups to N- as well as O-atoms of DNA bases. Especially the O-alkylated G and T bases have strong mutagenic properties, since they are capable of mispairing during replication. The mutagenic potential of N-alkylbases is less clear although specific base excision repair (BER) pathways exist which remove those lesions from the DNA. We investigated the relative contribution of N-alkylations to mutation induction at the Hprt gene in cultured Chinese hamster ovary cells (CHO). To this end BER activity in CHO cells was modulated by introduction of an expression vector carrying the rat N-alkylpurine-DNA glycosylase (APDG) gene, which codes for a glycosylase that is able to remove 3-methyladenine and 7-methylguanine from DNA thereby generating apurinic sites. Upon selection of a CHO clone which 10 times overproduced APDG compared to control CHO cells, mutation induction, the mutational spectrum, and cell survival were determined in both cell lines following treatment with methyl methanesulfonate (MMS). The results show that over-expression of APDG renders CHO cells more sensitive for mutation induction as well as cytotoxicity induced by MMS. The involvement of apurinic sites in induction of base pair changes at positions where 3-methyladenine was induced is inferred from the observation that the mutational spectrum of MMS-induced mutations in APDG-CHO cells showed twice as much base pair changes at AT base pairs (33.3%) compared to the spectrum of MMS-induced mutations in CHO-control cells (15.8%).  相似文献   

6.
gamma-Radiation mutagenesis (oxic versus anoxic) was examined in wild-type, umuC and recA strains of Escherichia coli K-12. Mutagenesis [argE3(Oc)----Arg+] was blocked in a delta (recA-srlR)306 strain at the same doses that induced mutations in umuC122::Tn5 and wild-type strains, indicating that both umuC-independent and umuC-dependent mechanisms function within recA-dependent misrepair. Analyses of various suppressor and back mutations that result in argE3 and hisG4 ochre reversion and an analysis of trpE9777 (+1 frameshift) reversion were performed on umuC and wild-type cells irradiated in the presence and absence of oxygen. While the umuC strain showed the gamma-radiation induction of base substitution and frameshifts when irradiated in the absence of oxygen, the umuC mutation blocked all oxygen-dependent base-substitution mutagenesis, but not all oxygen-dependent frameshift mutagenesis. For anoxically irradiated cells, the yields of GC----AT [i.e., at the supB and supE (Oc) loci] and AT----GC transitions (i.e., at the argE3 and hisG4 loci) were essentially umuC independent, while the yields of (AT or GC)----TA transversions (i.e., at the supC, supL, supM, supN and supX loci) were heavily umuC dependent. These data suggest new concepts about the nature of the DNA lesions and the mutagenic mechanisms that lead to gamma-radiation mutagenesis.  相似文献   

7.
The mutagenic epoxide metabolite of acrylonitrile, 2-cyanoethylene oxide (ANO), was used to treat human TK6 lymphoblasts (150 microM x 2 h ANO). A collection of hypoxanthine-phosphoribosyltransferase (hprt) mutants was isolated and characterized by dideoxy sequencing of cloned hprt cDNA. Base-pair substitution mutations in the hprt coding region were observed in 19/39 of hprt mutants: 11 occurred at AT base pairs and 8 at GC base pairs. Two -1 frameshift mutations involving GC bases were also observed. Approximately half (17/39) of the hprt mutants displayed the complete loss of single and multiple exons from hprt cDNA, as well as small deletions, some extending from exon/exon junctions. Southern blot analysis of 5 mutants with single exon losses revealed no visible alterations. Analysis of 1 mutant missing exons 3-6 in its hprt mRNA revealed a visible deletion in the corresponding region in its genomic DNA. The missing exon regions of 4 mutants (one each with exons 6, 7 and 8 loss and one mutant with a 17-base deletion of the 5' region of exon 9) were PCR amplified from genomic DNA and analyzed by Southern blot using exon-specific probes. The exons missing from the hprt mRNA were present in the genomic hprt sequence. DNA sequencing of the appropriate intron/exon regions of hprt genomic DNA from a mutant with exon 8 loss and a mutant exhibiting aberrant splicing in exon 9 revealed point mutations in the splice acceptor site of exon 8 (T----A) and exon 9 (A----G), respectively.  相似文献   

8.
Benzene is one of the chemicals widely contaminating the environment. Benzene is suggested to be a human leukemogen. When benzene is absorbed in the human body, it is metabolized firstly in the liver and subsequently in the bone marrow where it provokes initiation of leukemia. In the present study, we analyzed mutations induced by p-benzoquinone (p-BQ), a benzene metabolite, in human cells using a shuttle vector plasmid pMY189, and compared frequencies, types and spectra of the mutations with those of the mutations previously revealed in mouse cells using a similar plasmid pNY200. We found that p-BQ induces mutations in human and mouse cells at similar frequencies but with different types of mutagenesis. The proportion of tandem base mutations was significantly lower in human cells than in mouse cells. Most base substitutions were induced in G:C base pairs in both human and mouse cells. However, the proportion of G:C-->C :G transversion is significantly higher in human cells. These findings indicate that the p-BQ-induced DNA damage in human and mouse cells is processed in a different manner, and that extrapolation of mice findings on experimental benzene carcinogenesis to human cancer risk assessment should be conducted carefully.  相似文献   

9.
Mutations induced by UVB (313-nm) radiation, a wavelength in the region of peak effectiveness for sunlight-induced skin cancer in humans, have been analyzed at the sequence level in simian cells by using a plasmid shuttle vector (pZ189). We find that significant differences exist between the types of mutations induced by this solar wavelength and those induced by nonsolar UVC (254-nm) radiation. Compared with 254-nm radiation, 313-nm radiation induces more deletions and insertions in the region sequenced. In addition, although the types of base substitutions induced by the two wavelengths are broadly similar (in both cases, the majority of changes occur at G-C base pairs and the G-C to A-T transition is predominant), an analysis of the distribution of these base changes within the supF gene following irradiation at 313 nm reveals additional hot spots for mutation not seen after irradiation at 254 nm. These hot spots are shown to arise predominantly at sites of mutations involving multiple base changes, a class of mutations which arises more frequently at the longer solar wavelength. Lastly, we observed that most of the sites at which mutational hot spots arise after both UVC and UVB irradiation of the shuttle vector are also sites at which mutations arise spontaneously. Thus, a common mechanism may be involved in determining the site specificity of mutations, in which the DNA structure may be a more important determinant than the positions of DNA photoproducts.  相似文献   

10.
The molecular mechanisms of ethyl methanesulfonate-induced reversion in mammalian cells were studied by using as a target a gpt gene that was integrated chromosomally as part of a shuttle vector. Murine cells containing mutant gpt genes with single base changes were mutagenized with ethyl methanesulfonate, and revertant colonies were isolated. Ethyl methanesulfonate failed to increase the frequency of revertants for cell lines with mutant gpt genes carrying GC----AT transitions or AT----TA transversions, whereas it increased the frequency 50-fold to greater than 800-fold for cell lines with mutant gpt genes carrying AT----GC transitions and for one cell line with a GC----CG transversion. The gpt genes of 15 independent revertants derived from the ethyl methanesulfonate-revertible cell lines were recovered and sequenced. All revertants derived from cell lines with AT----GC transitions had mutated back to the wild-type gpt sequence via GC----AT transitions at their original sites of mutation. Five of six revertants derived from the cell line carrying a gpt gene with a GC----CG transversion had mutated via GC----AT transition at the site of the original mutation or at the adjacent base in the same triplet; these changes generated non-wild-type DNA sequences that code for non-wild-type amino acids that are apparently compatible with xanthine-guanine phosphoribosyltransferase activity. The sixth revertant had mutated via CG----GC transversion back to the wild-type sequence. The results of this study define certain amino acid substitutions in the xanthine-guanine phosphoribosyltransferase polypeptide that are compatible with enzyme activity. These results also establish mutagen-induced reversion analysis as a sensitive and specific assay for mutagenesis in mammalian cells.  相似文献   

11.
Ozone is an important factor in urban pollution and represents a major concern for human health. The chemical reactivity of ozone toward biological targets and particularly its genotoxicity supports a possible link between exposure and cancer risk, but no molecular data exist on its mutagenic potential in human cells. Using a shuttle vector, we showed that ozone is indeed a potent mutagen and we characterized the mutation spectrum it produced in human cells. Almost all mutations are base substitutions, essentially located at G:Cs (75%), typical of reactive oxygen species (ROS), but occurring in a specific pattern, i.e. a similar extent of GC:TA (28%), GC:CG (23%) and GC:AT (23%). The targeted distribution of mutations and identification of hotspot sequences define the first molecular fingerprint of mutations induced by ozone in human cells. Possible applications derived from our results with respect to ozone genotoxicity should help determining quantifiable biomarkers of ozone exposure in human health, especially for carcinogenesis.  相似文献   

12.
The frequency and specificity of mutations produced in vitro by eucaryotic DNA polymerase-beta have been determined in a forward mutation assay using a 250-base target sequence in M13mp2 DNA. Homogeneous DNA polymerase-beta, isolated from four different sources, produces mutations at a frequency of 4-6%/single round of gap-filling DNA synthesis. DNA sequence analyses of 460 independent mutants resulting from this error-prone DNA synthesis demonstrate a wide variety of mutational events. Frameshift and base substitutions are made at approximately equal frequency and together comprise about 90% of all mutations. Two mutational "hot spots" for frameshift and base substitution mutations were observed. The characteristics of the mutations at these sites suggest that certain base substitution errors result from dislocation of template bases rather than from direct mispair formation by DNA polymerase-beta. When considering the entire target sequence, single-base frameshift mutations occur primarily in runs of identical bases, usually pyrimidines. The loss of a single base occurs 20-80 times more frequently than single-base additions and much more frequently than the loss of two or more bases. Base substitutions occur at many sites throughout the target, representing a wide spectrum of mispair formations. Averaged over a large number of phenotypically detectable sites, the base substitution error frequency is greater than one mistake for every 5000 bases polymerized. Large deletion mutations are also observed, at a frequency more than 10-fold over background, indicating that purified DNA polymerases alone are capable of producing such deletions. These data are discussed in relation to the physical and kinetic properties of the purified enzymes and with respect to the proposed role for this DNA polymerase in vivo.  相似文献   

13.
Transfected DNA is mutated in monkey, mouse, and human cells.   总被引:45,自引:17,他引:28       下载免费PDF全文
Papovavirus-based shuttle vectors containing the bacterial lacI gene were used to show that a mutation frequency in the range of 1% occurs in lacI when such vectors are transfected into COS7 and CV-1 simian cells, NIH 3T3, 3T6, L, and C127 mouse cells, and human 293 and HeLa cells. This frequency is approximately four orders of magnitude higher than the spontaneous mutation frequency in either mammalian or bacterial cells. The mutations are predominantly base substitutions and deletions and also include insertions from the mammalian genome. Time course experiments argue that mutagenesis occurs soon after arrival of the DNA into the nucleus. However, replication of the vector is not required since mutations occur even when the vector lacks all viral sequences. The high mutation frequency appears to be the characteristic outcome of transfection of DNA into mammalian cells.  相似文献   

14.
1-Nitropyrene has been shown in bacterial assays to be the principal mutagenic agent in diesel emission particulates. It has also been shown to be mutagenic in human fibroblasts and carcinogenic in animals. To investigate the kinds of mutations induced by this carcinogen and compare them with those induced by a structurally related carcinogen, (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetra-hydrobenzo [a]pyrene (BPDE) (J.-L. Yang, V. M. Maher, and J. J. McCormick, Proc. Natl. Acad. Sci. USA 84:3787-3791, 1987), we treated a shuttle vector with tritiated 1-nitrosopyrene (1-NOP), a carcinogenic mutagenic intermediate metabolite of 1-nitropyrene which forms the same DNA adduct as the parent compound, and introduced the plasmids into a human embryonic kidney cell line, 293, for DNA replication to take place. The treated plasmid, pZ189, carrying a bacterial suppressor tRNA target gene, supF, was allowed 48 h to replicate in the human cells. Progeny plasmids were then rescued, purified, and introduced into bacteria carrying an amber mutation in the beta-galactosidase gene in order to detect those carrying mutations in the supF gene. The frequency of mutants increased in direct proportion to the number of DNA-1-NOP adducts formed per plasmid. At the highest level of adduct formation tested, the frequency of supF mutants was 26 times higher than the background frequency of 1.4 X 10(-4). DNA sequencing of 60 unequivocally independent mutant derived from 1-NOP-treated plasmids indicated that 80% contained a single base substitution, 5% had two base substitutions, 4% had small insertions or deletions (1 or 2 base pairs), and 11% showed a deletion or insertion of 4 or more base pairs. Sequence data from 25 supF mutants derived from untreated plasmids showed that 64% contained deletions of 4 or more base pairs. The majority (83%) of the base substitution in mutants from 1-NOP-treated plasmids were transversions, with 73% of these being G . C --> T . A. This is very similar to what we found previously in this system, using BPDE, but each carcinogen produced its own spectrum of mutations. Of the five hot spots for base substitution mutations produced in the supF gene with 1-NOP, two were the same as seen with BPDE-treated plasmids. However, the three other hot spots were cold spots for BPDE-treated plasmids. Conversely, four of the other five hot spots seen with BPDE-treated plasmids were cold spots for 1-NOP-treated plasmids. Comparison of the two carcinogens for the frequency of supF mutants induced per DNA adduct showed that 1-NOP-induced adducts were 3.8 times less than BPDE adducts. However, the 293 cell excised 1-NOP-induced adducts faster than BPDE adducts.  相似文献   

15.
Benzene is one of the chemicals widely contaminating the environment. Benzene is suggested to be a human leukemogen. When benzene is absorbed in the human body, it is metabolized firstly in the liver and subsequently in the bone marrow where it provokes initiation of leukemia. In the present study, we analyzed mutations induced by p-benzoquinone (p-BQ), a benzene metabolite, in human cells using a shuttle vector plasmid pMY189, and compared frequencies, types and spectra of the mutations with those of the mutations previously revealed in mouse cells using a similar plasmid pNY200. We found that p-BQ induces mutations in human and mouse cells at similar frequencies but with different types of mutagenesis. The proportion of tandem base mutations was significantly lower in human cells than in mouse cells. Most base substitutions were induced in G:C base pairs in both human and mouse cells. However, the proportion of G:C→C :G transversion is significantly higher in human cells. These findings indicate that the p-BQ-induced DNA damage in human and mouse cells is processed in a different manner, and that extrapolation of mice findings on experimental benzene carcinogenesis to human cancer risk assessment should be conducted carefully.  相似文献   

16.
Mutagenesis by N-acetoxy-N-trifluoroacetyl-4-aminobiphenyl, a reactive form of the human bladder carcinogen 4-aminobiphenyl (ABP), was studied in Escherichia coli virus M13mp10. N-acetoxy-N-trifluoroacetyl-4-ABP-treated DNA containing 140 lesions/duplex genome, when introduced into excision repair-competent cells induced for SOS mutagenic processing, resulted in a 40-fold increase in mutation frequency over background in the lacZ alpha gene fragment. DNA sequence changes were determined for 20 independent mutants. G-C base pairs were the major targets for base pair substitution mutations, although significant mutagenic activity was also observed at certain A-T base pairs. Deletion and frameshift mutations also were found in this sample. The salient feature of this partial "mutational spectrum" was a hotspot that occurred at position 6357 (amino acid 30 of the beta-galactosidase fragment encoded by M13mp10); this A-T to T-A transversion appeared in 6 of the 20 mutants. The property of ABP to mutate A-T base pairs was consistent with the result that N-hydroxy-ABP reverted Salmonella typhimurium strain TA104, which is presumed to revert primarily due to mutations at these sites. The ability of the major carcinogen-DNA adduct formed by ABP in vivo and in vitro, N-(deoxyguanosin-8-yl)-4-aminobiphenyl, to cause base pair substitution mutations was also investigated. This adduct was positioned specifically in the minus strand at position 6270 in duplex M13mp10 DNA. In the presence of the mutagenesis-enhancing plasmid pGW16 and UV induction of SOS mutagenic processing, it was shown that fewer than 0.02% of the adducts resulted in transition or transversion mutations following transfection of DNA into excision-repair competent cells. Similar results were obtained in uvrA and uvrC backgrounds. Although the major adduct did not cause base substitution mutations under these experimental conditions, the contribution of this lesion to the entire spectrum of mutations in the lacZ alpha fragment seems likely.  相似文献   

17.
Specificity of mutations induced in transfected DNA by mammalian cells   总被引:29,自引:1,他引:28       下载免费PDF全文
DNA transfected into mammalian cells is subject to the high mutation frequency of approximately 1% per gene. We present data bearing on the derivation of the two main classes of mutations detected, base substitutions and deletions. The DNA sequence change is reported for nearly 100 independent base substitution mutations that occurred in shuttle vectors as a result of passage in simian cells. All of the mutations occur at G:C base pairs and involve either transition to A:T or transversion to T:A. To identify possible mutational intermediates, various topological forms of the vector DNA were introduced separately. Supercoiled and relaxed DNA are mutated at equal frequencies. However, linearized DNA leads to a greatly elevated frequency of deletions. Nicked and gapped templates stimulate both deletions and base substitutions. We discuss a model involving intracellular degradation of the transfected DNA which explains these observations.  相似文献   

18.
Semi-conservative replication of double-stranded DNA in eukaryotic cells is an asymmetric process involving leading and lagging strand synthesis and different DNA polymerases. We report a study to analyze the effect of these asymmetries when the replication machinery encounters alkylation-induced DNA adducts. The model system is an EBV-derived shuttle vector which replicates in synchrony with the host human cells and carries as marker gene the bacterial gpt gene. A preferential distribution of N-methyl-N-nitrosourea (MNU)-induced mutations in the non transcribed DNA strand of the shuttle vector pF1-EBV was previously reported. The hypermutated strand was the leading strand. To test whether the different fidelity of DNA polymerases synthesizing the leading and the lagging strands might contribute to MNU-induced mutation distribution the mutagenesis study was repeated on the shuttle vector pTF-EBV which contains the gpt gene in the inverted orientation. We show that the base substitution error rates on an alkylated substrate are similar for the replication of the leading and lagging strands. Moreover, we present evidence that the fidelity of replication opposite O6-methylguanine adducts of both the leading and lagging strands is not affected by the 3' flanking base. The preferential targeting of mutations after replication of alkylated DNA is mainly driven by the base at the 5' side of the G residues.  相似文献   

19.
K. R. Tindall  J. Stein    F. Hutchinson 《Genetics》1988,118(4):551-560
Mutations in the cI (repressor) gene were induced by gamma-ray irradiation of lambda phage and of prophage, and 121 mutations were sequenced. Two-thirds of the mutations in irradiated phage assayed in recA host cells (no induction of the SOS response) were G:C to A:T transitions; it is hypothesized that these may arise during DNA replication from adenine mispairing with a cytosine product deaminated by irradiation. For irradiated phage assayed in host cells in which the SOS response had been induced, 85% of the mutations were base substitutions, and in 40 of the 41 base changes, a preexisting base pair had been replaced by an A:T pair; these might come from damaged bases acting as AP (apurinic or apyrimidinic) sites. The remaining mutations were 1 and 2 base deletions. In irradiated prophage, base change mutations involved the substitution of both A:T and of G:C pairs for the preexisting pairs; the substitution of G:C pairs shows that some base substitution mechanism acts on the cell genome but not on the phage. In the irradiated prophage, frameshifts and a significant number of gross rearrangements were also found.  相似文献   

20.
Chen Q  Chen Y  Qi Y  Hao L  Tang S  Xiao X 《Mutation research》2008,644(1-2):11-16
Carbadox, a quinoxaline 1,4-dioxide derivative, is a known mutagen with its functional mechanism yet to be well defined. In the present study we used a shuttle vector assay in vitro to uncover the functional details of carbadox-induced mutagenesis in mammalian cells. The plasmid DNA of a shuttle vector pSP189 was treated with different doses of carbadox at 37 degrees C for 1 or 2h with or without the presence of S9. The target gene SupF in the plasmid was sequenced after replication in Vero cells followed by amplification in Escherichia coli MBM7070 to evaluate mutation frequency. DNA sequencing analysis of recovered carbadox-induced mutations revealed 76.3% single base substitution, 7.9% single base insertion, 10.5% single base deletion and 5.3% large fragments deletion. All single base substitutions occurred at G:C base pairs, among which transversion and transition occurred at a 2:1 ratio. The mutations did not occur randomly in the supF gene, but had sequence specificity and hotspots instead: most substitutions were detected at the nucleotide N in a 5'-NNTTNN-3' sequence; 75% of base insertions were seen in the 5'-TCC-3' sequence; whereas all large fragments deletions occurred in the 5'-ANGGCCNAAA-3' sequence. Nucleotide 129, 141 and 155 in the supF gene of plasmid pSP189 were identified as the hotspots for carbadox-induced mutations that accounted for 65% of all single base substitutions. We conclude that carbadox and its metabolites induce sequence-specific DNA mutations at high frequencies, therefore its safe usage in animal husbandry should be seriously considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号