首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbit mammary fatty acid synthase was labelled in the acyl transferase domain(s) by the formation of the O-ester intermediates after incubation with [14C]acetyl- or malonyl-CoA. Elastase peptides containing the labelled acyl groups were isolated using high performance liquid chromatography and sequenced by fast atom bombardment mass spectrometry. An identical peptide (acyl-Ser---Leu---Gly---Glu---Val---Ala) was obtained after labelling with acetyl- or malonyl-CoA. This confirms the hypothesis that, unlike Escherichia coli or yeast, a single transferase catalyses the transfer of both acetyl- and malonyl-groups in the mammalian complex. The sequence at this site is compared with that around the active serine in other acyl transferases and hydrolases.  相似文献   

2.
Bacterial acyl carrier protein (ACP) is a small, acidic, and highly conserved protein that supplies acyl groups for biosynthesis of a variety of lipid products. Recent modelling studies predict that residues primarily in helix II of Escherichia coli ACP (Glu-41, Ala-45) are involved in its interaction with the condensing enzyme FabH of fatty acid synthase. Using recombinant Vibrio harveyi ACP as a template for site-directed mutagenesis, we have shown that an acidic residue at position 41 is essential for V. harveyi fatty acid synthase (but not acyl-ACP synthetase) activity. In contrast, various replacements of Ala-45 were tolerated by both enzymes. None of the mutations introduced dramatic structural changes based on circular dichroism and native gel electrophoresis. These results confirm that Glu-41 of ACP is a critical residue for fatty acid synthase, but not for all enzymes that utilize ACP as a substrate.  相似文献   

3.
Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [13C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed.  相似文献   

4.
The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the thioesterase (TE) domain of the bovine fatty acid synthase (FASN) gene and to evaluate the extent to which they were associated with beef fatty acid composition. The four exons in FASN that encode for the TE domain were sequenced, and three SNPs, AF285607:g.17924A>G, g.18663T>C and g.18727C>T, were identified. Purebred Angus bulls (n = 331) were classified into three genotype groups, g.17924AA (n = 121), g.17924AG (n = 168) and g.17924GG (n = 42). The g.17924A>G genotype was significantly associated with fatty acid composition of longissimus dorsi muscle of Angus bulls. Cattle with the g.17924GG genotype had lower myristic acid (C14:0; P < 0.0001), palmitic acid (C16:0, P < 0.05) and total saturated fatty acid contents (P < 0.01), greater health index (P < 0.001), oleic acid content (C18:1; P < 0.001) and total monounsaturated fatty acid concentration (P < 0.01) in the total lipids and triacylglycerols fraction than did those with the g.17924AA genotype. Because of the linkage disequilibrium between SNPs g.17924A>G and g.18663T>C, similar significant associations of fatty acid contents with the g.18663T>C genotypes were observed. In conclusion, the SNPs g.17924A>G and g.18663T>C may be used as DNA markers to select breeding stock that have a healthier fatty acid composition.  相似文献   

5.
Inhibition of fatty acid synthase (FAS) reduces food intake in rodents. As adipose tissue expresses FAS, we sought to investigate the effect of reduced FAS activity on adipocyte differentiation. FAS activity was suppressed either pharmacologically or by siRNA during differentiation of 3T3-L1 cells. Cerulenin (10 microM), triclosan (50 microM), and C75 (50 microM) reduced dramatically visible lipid droplet accumulation, while incorporation of [1-(14C)]acetate into lipids was reduced by 75%, 70%, and 90%, respectively. Additionally, the substances reduced FAS, CEBPalpha, and PPARgamma mRNA by up to 85% compared to that of control differentiated cells. Transient transfection with FAS siRNA suppressed FAS mRNA and FAS activity, and this was accompanied by reduction of CEBPalpha and PPARgamma mRNA levels, and complete prevention of lipid accumulation. CD36, a late marker of differentiation, was also reduced. Together, these results suggest that FAS generated signals may be essential to support preadipocyte differentiation.  相似文献   

6.
Oleuropein (OL) and hydroxytyrosol (HT), the main olive oil polyphenols, possess anti-proliferative effects in vitro. Fatty acid synthase, a key anabolic enzyme of biosynthesis of fatty acids, plays an important role in colon carcinoma development. Our aim was to investigate whether gene expression of FAS, as well as its enzymatic activity, is regulated by HT and OL in two human colon cancer cell lines, as HT-29 and SW620. In addition, we investigated the effects of these polyphenols on growth and apoptosis in these cells. FAS gene expression and activity in treated HT-29 and SW620 cells were evaluated by real-time PCR and radiochemical assay, respectively. Cell growth and apoptosis, after polyphenols treatment, were measured by MTT test and flow cytometry, respectively. The inhibition of proliferation, detected after HT treatment, was mediated by an inhibition of FAS expression and its enzymatic activity in SW620 cells, while the anti-proliferative effect in HT-29 cells seems to be independent from FAS. OL exerted an anti-proliferative effect only on SW620 cells with a mechanism which excluded FAS. Olive oil polyphenols used were able to induce apoptosis in both cell lines studied. The increase of apoptosis in these cells was accompanied by the block of cell cycle in the S phase. This study demonstrates that HT and OL may induce anti-proliferative and pro-apoptotic effects only in certain human colorectal cancer cell types. These effects are FAS mediated only in SW620 cells after treatment with HT.  相似文献   

7.
Metabolic deregulation accompanying type II diabetes is characterized by insulin resistance in peripheral tissues (liver, muscle, and adipose), mediated by impairments in insulin receptor (IR) signaling. Protein tyrosine phosphatase 1B (PTP1B) has been shown to be a negative regulator of IR autophosphorylation and thus has been considered as a major therapeutic target for the treatment of type II diabetes. We use RNA interference technique to downregulate PTP1B expression in hepatoma cell line. A secretory HBV s-antigen was introduced as reporter and driven by mouse fatty acid synthase promoter, which is positively controlled by insulin signaling. Liver-targeted hydrodynamic injection in tail vein was introduced to transfer siRNA (or siRNA expression vector) and reporter plasmid into mouse liver. On fasted/refed and glucose stimulation condition, the HBV s-antigen in sera in RNAi group was higher than that in the negative group. Our results provided evidence that upregulation of insulin signaling by reducing PTP1B liver with RNAi can be a potent diabetes treatment method.  相似文献   

8.
Fatty acid synthase (FAS) is a very significant lipogenic enzyme participating in energy metabolism in vivo and has been reported as a potential new therapeutic target for cancer treatment. The extracts from sixteen Aceraceae were prepared to assay their inhibitory activities against duck liver FAS and their correlated antitumor bioactivity. Their inhibition of FAS was composed of a reversible fast-binding inhibition, by which 0.41 μg/mL of the A. campestre extract inhibits 50% FAS activity, and an irreversible slow-binding inhibition with inactivation rate constants, kobs, ranging between 1.5 × 10? 3 and 10.6 × 10? 3 min? 1. Three Aceraceae extracts were selected from their smaller IC50 values to study different type of inhibitions against the three substrates in the FAS overall reaction. As compared with other reported FAS inhibitors including EGCG with regard to inhibition constant and IC50 value, the extracts appeared to be more efficient inhibitors, and exhibited a considerable inhibition against the growth of five types of cancer cells (China patent application number 200610088901.6), which may be related to the inhibition of lipogenesis in these cells.  相似文献   

9.
The discovery, structure-activity relationships, and optimization of a novel class of fatty acid synthase (FASN) inhibitors is reported. High throughput screening identified a series of substituted piperazines with structural features that enable interactions with many of the potency-driving regions of the FASN KR domain binding site. Derived from this series was FT113, a compound with potent biochemical and cellular activity, which translated into excellent activity in in vivo models.  相似文献   

10.
Summary Localization of acid phosphatase in mammary glands of lactating rats was studied by both biochemical and cytochemical methods. Cytochemically, acid phosphatase activity was detected by using lead citrate as the capture agent for the inorganic phosphate released from p-nitrophenyl phosphate. The activity was predominantly localized in the lumina of the endomembrane system and in the milk that had been secreted into the alveolar lumen. Biochemically, acid phosphatase was present in all the subcellular fractions with higher activities in the membrane-associated fractions. The localization of tartrate-resistant acid phosphatases within the endomembrane system of fully lactating rat mammary tissue suggests a possible role for these enzymes in milk secretory processes.Abbreviations ASMX 3-hydroxy-2-naphthoic acid 2,4-dimethylanilide - DMSO dimethylsulfoxide - DTT dithiothreitol - EDTA ethylenedinitrilo tetra-acetic acid - FGM fat globule membranes - MES 2-(N-morpholino) ethanesulfonic acid - PCMB p-chloromercuribenzoate - p-NPP p-nitrophenyl phosphate  相似文献   

11.
Abstract

De novo lipogenesis (DNL) by upregulation of fatty acid synthase (FASN) is an important metabolic alteration of cancer cells. FASN is over-expressed in several cancers and is often associated with a high risk of recurrence and poor prognosis. Differential expression of FASN in cancer cells and their normal counterparts leads to the impression that FASN can be an attractive druggable target in cancer therapy. Present study focuses on identification of inhibitors against FASN ketoacyl synthase (KS) domain from Asinex Biodesign compound database using in silico tools. Virtual screening resulted in the identification of two hit compounds BDD27845077 and BDD27845082 with a common core structure. Molecular Docking studies showed that BDD27845077 and BDD27845082 bind at the substrate entry channel of KS domain with GScore –12.03?kcal/mol and –12.29?kcal/mol respectively. Molecular dynamics (MD) simulation of the protein-ligand complexes shows the binding stability of ligands with FASN-KS. In vitro validation of BDD27845082 demonstrated that the compound possesses antiproliferative activity in a panel of human cancer cell lines including MDA-MB-231 (breast cancer), HCT-116 (colon cancer) and HeLa (cervical cancer) with maximum sensitivity against HCT-116 (IC 50?=?25?µM). The study put forward two lead compounds against FASN with favorable pharmacokinetic profile as indicated by virtual screening tools for the development of cancer chemotherapeutics.  相似文献   

12.
Fatty acid synthase (FAS) has been identified as a potential antitumor target. The extract from the leaves of Acer truncatum Bunge (Extr) was prepared to assay its inhibitory activity against FAS, which was isolated from duck liver, and the correlated antitumor bioactivity. Its inhibition of FAS is composed of reversible fast-binding inhibition, IC50 = 0.7 μg/ml, and irreversible slow-binding inhibition following saturation kinetics with a dissociation constant of 0.68 μg/ml and a limiting rate constant of 0.0288 min? 1. The Extr exhibited different type of inhibitions against the three substrates in the FAS overall reaction. Compared with EGCG in inhibition constant and IC50 value, the Extr appeared to be a more efficient inhibitor, and exhibited a considerable inhibition against the growth of four kinds of cancer cells (patent application number 200510068054.2). It was infered that the inhibitory activity is likely attributable to the co-operative effect of the components.  相似文献   

13.
14.
Tannins exist widely in plants, but because they precipitate proteins, scientists frequently ignore them in search of bioactive components. Catechu, a traditional astringent, is rich in tannins. In this study, we found that condensed tannins from catechu potently inhibited animal fatty acid synthase (FAS). Among them, trimeric condensed tannin showed the most potent inhibition with IC50 of 0.47 μg/ml and it also exhibited strong time-dependent inhibition. Its inhibitory kinetics and reacting sites on FAS were obviously different from the known inhibitors of FAS. Furthermore, condensed tannins were found to suppress the growth of MCF-7 breast cancer cells, and the effect was related to their activity of FAS inhibition. The inhibition of both FAS activity and MCF-7 growth was exhibited by low concentrations of condensed tannins without FAS being precipitated. These results suggest tannins would be a valuable resource of bioactive substances.  相似文献   

15.
16.
Development of fatty acid synthase (FAS) inhibitors has increasingly attracted much attention in recent years due to their potential therapeutic use in obesity and cancers. In this investigation, pharmacophore modeling based on the first crystal structure of human KS domain of FAS was carried out. The established pharmacophore model was taken as a 3D query for retrieving potent FAS inhibitors from the chemical database Specs. Docking study was further carried out to refine the obtained hit compounds. Finally, a total of 28 compounds were selected based on the ranking order and visual examination, which were first evaluated by a cell line-based assay. Seven compounds that have good inhibition activity against two FAS overexpressing cancer cell lines were further evaluated by an enzyme-based assay. One compound with a new chemical scaffold was found to have low micromolar inhibition potency against FAS, which has been subjected to further chemical structural modification.  相似文献   

17.
Type III polyketide synthases (PKSs) are the condensing enzymes that catalyze the formation of a myriad of aromatic polyketides in plant, bacteria, and fungi. Here we report the cloning and characterization of a putative type III PKS from Aspergillusniger, AnPKS. This enzyme catalyzes the synthesis of alkyl pyrones from C2 to C18 starter CoA thioesters with malonyl-CoA as an extender CoA through decaboxylative condensation and cyclization. It displays broad substrate specificity toward fatty acyl-CoA starters to yield triketide and tetraketide pyrones, with benzoyl-CoA as the most preferred starter. The optimal temperature and pH of AnPKS are 50°C and 8, respectively. Under optimal conditions, the enzyme shows the highest catalytic efficiency (k(cat)/K(m)) of 7.4×10(5)s(-1)M(-1) toward benzoyl-CoA. Homology modeling and site-directed mutagenesis were used to probe the molecular basis of its substrate specificity. This study should open doors for further engineering of AnPKS as a biocatalyst for synthesis of value-added polyketides.  相似文献   

18.
In order to investigate the in vivo substrate specificity of the type I polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha, we functionally expressed the PHA synthase gene in various Escherichia coli mutants affected in fatty acid beta-oxidation and the wild-type. The PHA synthase gene was expressed either solely (pBHR70) or in addition to the R. eutropha genes encoding beta-ketothiolase and acetoacetyl-coenzyme A (CoA) reductase comprising the entire PHB operon (pBHR68) as well as in combination with the phaC1 gene (pBHR77) from Pseudomonas aeruginosa encoding type II PHA synthase. The fatty acid beta-oxidation route was employed to provide various 3-hydroxyacyl-CoA thioesters, depending on the carbon source, as in vivo substrate for the PHA synthase. In vivo PHA synthase activity was indicated by PHA accumulation and substrate specificity was revealed by analysis of the comonomer composition of the respective polyester. Only in recombinant E. coli fad mutants harboring plasmid pBHR68, the R. eutropha PHA synthase led to accumulation of poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) (poly(3HB-co-3HO)) and poly(3HB-co-3HO-co-3-hydroxydodecanoate (3HDD)), when octanoate and decanoate or dodecanoate were provided as carbon source, respectively. Coexpression of phaC1 from P. aeruginosa indicated and confirmed the provision of PHA precursor via the beta-oxidation pathway and led to the accumulation of a blend of two different PHAs in the respective E. coli strain. These data strongly suggested that R. eutropha PHA synthase accepts, besides the main substrate 3-hydroxybutyryl-CoA, also the CoA thioesters of 3HO and 3HDD.  相似文献   

19.
Acyl carrier proteins participate in the synthesis of fatty acids. Here we report the NMR resonances assignment of the acyl carrier protein domain of the Saccharomyces cerevisiae fatty acid synthase which corresponds to the fragment 138A-302L in the primary structure. The assignment will allow performing NMR studies with the aim to investigate the intrinsic dynamics of this protein, and to study the structural changes upon apo-holo transformation in order to unveil the mechanism of binding of the growing acyl chain.  相似文献   

20.
  • 1.1. Membrane-free cytosol contained over 4% of both the total lipids and phospholipids present in homogenates of lactating rat mammary gland, and much of this lipid was associated with a high molecular weight complex isolated from cytosol by gel exclusion chromatography or by density gradient centrifugation.
  • 2.2. This complex principally consisted of polypeptides with apparent molecular weights of 220 and 116kDa. Lipids associated with this complex were transferred to endoplasmic reticulum and to intracellular lipid droplet precursors of milk lipid globules upon incubation in a cell-free system.
  • 3.3. This lipoprotein complex was abundant in cytosol from lactating mammary gland, but was diminished in amount in cytosol from involuted mammary glands. The 220 kDa constituent of this complex was identified as the monomer of fatty acid synthase.
  • 4.4. These results suggest that fatty acid synthase complex in lactating mammary gland may function in transfer of lipids necessary for formation or growth of lipid droplet precursors of milk lipid globules.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号