首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na, K-ATPase activity of the rat and guinea-pig myocardial sarcolemma and its sensitivity to digoxin (DG) and carbamylcholine (CCh) were investigated during experimental ischemia. Ischemia was induced by the incubation of hearts in the air at 37 degrees C. This 15-, 30- and 45-min treatment led to a decrease in enzymatic activity which was similar in both animal species. Dose-related dependence of DG effect (10(-8)-10(-2) M) on sarcolemmal Na, K-ATPase activity of guinea-pig ischemic hearts did not differ from the control, whereas the rat enzyme sensitivity to glycosides rose with the progress of ischemia. CCh (10(-7)-10(-3) M) produced an inhibition of Na, K-ATPase activity which had reached 40% both in the rat and guinea-pig myocardial preparations. This effect was blocked by atropine (10(-6) M). The magnitude of enzyme responses to CCh declined depending on the duration of ischemia, with it being greater in guinea-pig sarcolemma than in rat membrane. The increased sensitivity of the rat Na, K-ATPase to CCh was also observed.  相似文献   

2.
Activity of the Na/K-ATPase from rat brain synaptic membranes is inhibited by NA (noradrenaline). However, during fractionation of cytozole from nerve endings, two non-homogeneous peaks are found (SF(a), 60-100 kD and SF( i ),;10 kD), which influence the Na/K-ATPase activity, both directly and SF(a) NA-dependently. Joint action of NA and synaptic factors (SF(a) and SF(i)) on the Na/K-ATPase, represents a sum of four different processes: 1) NA, without synaptic factors, inhibits the Na/K-ATPase; 2) At low SF(a) concentrations NA-dependent Na/K-ATPase activatory mechanism is evident; 3) At high SF(a) concentrations NA-independent Na/K-ATPase is activated; 4) The low-molecular SF(i) protein inhibits the Na/K-ATPase. Regulation of the Na/K-ATPase activity by NA, SF(a) and SF( i), obtained in similar conditions from two weeks old and one year old rats, is different. In older rats SF(i) is characterized with strong Na/K-ATPase inhibition; in younger rats SF(i) does not change the Na/K-ATPase activity. The NA- and SF(i) -dependent inhibition and activation ratio is different in young and elder rats. In two week olds NA/SF(i) activatory mechanism is stronger, while in one year olds NA-dependent inhibition of the Na/K-ATPase is prevailing. These experimental data indicate that regulation of the Na/K-ATPase activity has an important role in synaptic transmission and that this process has noteworthy, albeit presently unknown, functional importance in integrative activity of the brain.  相似文献   

3.
Long duration ischemia in hypothermic conditions followed by reperfusion alters membrane transport function and in particular Na,K-ATPase. We compared the protective effect of two well-described cardioplegic solutions on cardiac Na,K-ATPase activity during reperfusion after hypothermic ischemia. Isolated perfused rat hearts (n = 10) were arrested with CRMBM or UW cardioplegic solutions and submitted to 12 hr of ischemia at 4 degrees C in the same solution followed by 60 min of reperfusion. Functional recovery and Na,K-ATPase activity were measured at the end of reperfusion and compared with control hearts and hearts submitted to severe ischemia (30 min at 37 degrees C) followed by reflow. Na,K-ATPase activity was not altered after 12 hr of ischemia and 1 hr reflow when the CRMBM solution was used for preservation (55 +/- 2 micromolPi/mg prot/hr) compared to control (53 +/- 2 micromol Pi/mg prot/hr) while it was significantly altered with UW solution (44 +/- 2 micromol Pi/mg prot/hr, p < 0.05 vs control and CRMBM). Better preservation of Na,K-ATPase activity with the CRMBM solution was associated with higher functional recovery compared to UW as represented by the recovery of RPP, 52 +/- 12% vs 8 +/- 5%, p < 0.05 and coronary flow (70 +/- 2% vs 50 +/- 8%, p < 0.05). The enhanced protection provided by CRMBM compared to UW may be related to its lower K+ content.  相似文献   

4.
Recently, we reported that dietary ethyl docosahexaenoate (Et-DHA) intake decreases the level of membrane arachidonic acid (AA), which reduces the generation of AA metabolites in ischemic gerbil brain. As an extended study, we further investigated the influence of the chronic administration of Et-DHA on free AA levels after ischemia. In addition, Na,K-ATPase activity, cation content, cerebral edema and brain damage were also evaluated. Weanling male gerbils were orally pretreated with either Et-DHA (200 mg/kg) or vehicle, once a day for 10 weeks, and subjected to transient forebrain ischemia by bilateral common carotid occlusion for 30 min. Time-course analyses revealed that pretreatment with Et-DHA, compared with pretreatment with the vehicle, significantly decreased the brain's free AA levels during ischemia (5, 15 and 30 min) and after reperfusion (5, 10, 15 and 30 min), and attenuated the decline of Na,K-ATPase activity at examined time points. Pretreatment with Et-DHA significantly prevented an increase in Na(+) concentration and a decrease in K(+) concentration after 24 h of reperfusion, which resulted in lower cerebral water content. Reduced brain infarct volume and low animal mortality were also observed in Et-DHA-treated animals. These data suggest that the reduction of ischemia-induced AA liberation and accumulation by Et-DHA pretreatment may be attributable to (a) protection against the decline of Na,K-ATPase activity, (b) postischemic cerebral edema and brain damage and (c) animal mortality.  相似文献   

5.
Using cupric phenanthroline as a cross-linking agent, we have shown that melittin induced time-dependent aggregations of Na,K-ATPase in microsomal fractions and in preparations of purified Na,K-ATPase from duck salt glands. Incubation of melittin with these preparations also led to the progressive loss of Na,K-ATPase activity. At melittin/protein molar ratio of 5:1, we did not observe inhibition of Na,K-ATPase in the microsomal fraction but the process of enzyme aggregation occurred. At higher melittin/protein molar ratios (10:1 and 30:1), the inhibition of the enzyme and its aggregation proceeded simultaneously but the rates of these processes and maximal values achieved were different. At a melittin/protein ratio of 30:1, Na,K-ATPase inhibition may be described as a biexponential curve with the values for pseudo-first order rate constants being 2.7 and 0.15 min(-1). However, the aggregation may be presented by a monoexponential curve with a pseudo-first order rate constant of 0.15 min(-1). In purified preparations of Na,K-ATPase, the maximal aggregation (about 90%) was achieved at a melittin/protein molar ratio of 2:1, and a further increase in the melittin/protein ratio increased the rate of aggregation but did not affect the value of maximal aggregation. The results show that melittin induced both aggregation and inhibition of Na,K-ATPase but these two processes proceeded independently.  相似文献   

6.
The Na,K-ATPase activity in microsomal fraction isolated from kidneys of winter hibernating ground squirrels was found to be 1.8–2.0-fold lower than that in active animals in summer. This is partially connected with a decrease in Na,K-ATPase protein content in these preparations (by 25%). Using antibodies to different isoforms of Na,K-ATPase α-subunit and analysis of enzyme inhibition by ouabain, it was found that the decrease in Na,K-ATPase activity during hibernation is not connected with change in isoenzyme composition. Seasonal changes of Na,K-ATPase a-subunit phosphory- lation level by endogenous protein kinases were not found. Proteins which could be potential regulators of Na,K-ATPase activity were not found among phosphorylated proteins of the microsomes. Analysis of the composition and properties of the lipid phase of microsomes showed that the total level of unsaturation of fatty acids and the lipid/protein ratio are not changed significantly during hibernation, whereas the cholesterol content in preparations from kidneys of hibernating ground squirrels is approximately twice higher than that in preparations from kidneys of active animals. However, using spin and fluorescent probes it was shown that this difference in cholesterol content does not affect the integral membrane micro-viscosity of microsomes. Using the cross-linking agent cupric phenanthroline, it was shown that Na,K-ATPase in mem- branes of microsomes from kidneys of hibernating ground squirrels is present in more aggregated state in comparison with membranes of microsomes from kidneys of active animals. We suggest that the decrease in Na,K-ATPase activity in kidneys of ground squirrels during hibernation is mainly connected with the aggregation of proteins in plasma membrane.  相似文献   

7.
The properties of Ca-transporting system in sarcoplasmic reticulum membranes in fast and slow frog muscles as well as some properties of sarcolemma Na, K-ATPase of the same object were investigated. The rate of Ca2+ uptake, Ca-ATPase activity and Ca/ATP ratio for the reticulum of fast muscle demonstrated higher values than those for the reticulum of slow muscle. The rate of Ca2+ accumulation by the fragments of the rectus reticulum and Ca/ATP ratio were found to decrease under the influence of acetylcholine (0.05-5 mM). The transport system of the sartorius reticulum was found to be less sensitive to acetylcholine. The peak activity of Na, K-ATPase in femoral muscles of the frog occurred at 80 mM NaCl and 60 mM KCl, whereas in the rectus abdominal muscle it equalled 100 mM NaCl and 40 mM KCl. Thus, Na, K-ATPase activity in the slow muscle was predominantly higher than that in the mixed (femoral) muscles. If the sarcolemma preparations of the muscles of both types the inhibitory effect of acetylcholine on Na; K-ATPase was registered. The enzyme of slow muscles exhibited higher sensibility to acetylcholine.  相似文献   

8.
The effect of high concentrations of glucose on Na, K-ATPase activity and the polyol pathway was studied using cultured bovine aortic endothelial cells. Na, K-ATPase activity was expressed as ouabain-sensitive K+ uptake. A significant decrease in Na, K-ATPase activity with an intracellular accumulation of sorbitol was found in confluent endothelial cells incubated with 400 mg/dl glucose for 96 h. However, there was no significant change in the Na, K-ATPase activity or sorbitol content of the cells incubated with 100 mg/dl glucose plus 300 mg/dl mannitol. The decrease in Na, K-ATPase induced by the high glucose concentration was restored by the simultaneous addition of 10(-4) M ponalrestat (ICI 128,436; Statil), an aldose reductase inhibitor. The addition of this agent also significantly reduced the increase in sorbitol induced by high glucose levels. These results suggest that the decrease in Na, K-ATPase activity induced in cultured aortic endothelial cells by high concentrations of glucose may be caused in part by the accumulation of sorbitol.  相似文献   

9.
In amphibian and mammalian systems, regulation of Na+ transport via the Na,K-ATPase plays an important role in distinct developmental processes such as blastocoele formation and neurulation. In this study, we have followed the Na,K-ATPase activity, the biosynthesis, and the cellular accumulation of catalytic alpha-subunits after fertilization of Xenopus laevis eggs up to neurula formation. Our data show that Na,K-ATPase activity increases significantly between stages 4 and 6 and again between stages 13 and 24. The four-fold rise in Na,K-ATPase activity during blastocoele formation is not mediated by an increased cellular pool of alpha-subunits. On the other hand, a five-fold increase of the biosynthesis rate around midblastula precedes a progressive accumulation up to neurula stage mainly of alpha 1-subunits and to a lesser extent of a second alpha-immunoreactive species. In contrast, newly synthesized glycoproteinic beta 1-subunits of Na,K-ATPase cannot be detected up to late neurula. These data indicate that (1) upregulation of Na,K-ATPase activity during blastocoele and neurula formation are mediated by different regulation mechanisms and (2) alpha- and possibly beta-isoforms are expressed in a developmentally regulated fashion during early Xenopus development.  相似文献   

10.
The dependence of Na,K-ATPase activity on concentrations of ATP, Na+, K+, Mg2+ and ouabain in the membrane preparations of crab gills was studied. The first group of crabs was adapted to freshened (25%) and the second one--to normal (100%) sea water. A 40-day adaptation of crabs to the freshened sea water results in an increase of maximal activity of Na,K-ATPase, but does not affect the enzyme affinity for ATP, Na+, K+, Mg2+ and ouabain, as well as its cooperative properties. It is assumed that adaptation of crabs to freshened sea water is accompanied by an accumulation of Na, K-ATPase in the epithelial cell membranes or crab gills without causing any qualitative changes of the enzyme.  相似文献   

11.
Influence of global ischemia on the sarcolemmal ATPases in the rat heart   总被引:1,自引:0,他引:1  
To elucidate the effect of global ischemia on the energy utilizing processes, regarding the molecular principles, the kinetic and thermodynamic properties of the sarcolemmal ATPases were investigated in the rat heart. The activation energy for hydrolysis of ATP during ischemia was higher when the reaction was catalyzed by Ca-ATPase or Mg-ATPase. For the Na,K-ATPase reaction, no changes in the activation energy were observed. With respect to the enzyme kinetics, ischemia in a timedependent manner induced important alterations in KM and Vmax values of Na,K-ATPase, Ca-ATPase and Mg-ATPase. The Vmax value decreased significantly already after 15 min of ischemia, and it also remained low after 30, 45 and 60 min for all 3 enzymes. The significant diminution of KM values occurred later in the 30th min for Ca-ATPase, in the 45th min for Na,K-ATPase. The observed drop in KM indicates the increase in the affinity of the enzymes to substrate, suggesting thus the adaptation to ischemic conditions on the molecular level. This effect could be attributed to some conformational changes of the protein molecule in the vicinity of the ATP-binding site developing after longer duration of ischemia.  相似文献   

12.
In glucose-deprived cerebellar granule cells, substitution of extracellular Na+ with Li+ or Cs+ prevented N-methyl-D-aspartate (NMDA)-induced excitotoxicity. NMDA stimulated 45Ca2+ accumulation and ATP depletion in a Na-dependent manner, and caused neuronal death, even if applied while Na,K-ATPase was inhibited by 1 mM ouabain. The cells treated with NMDA in the presence of ouabain accumulated sizable 45Ca2+ load but most of them failed to elevate cytosolic [Ca2+] upon mitochondrial depolarization. Na/Ca exchange inhibitor, KB-R7943, inhibited Na-dependent and NMDA-induced 45Ca2+ accumulation but only if Na,K-ATPase activity was compromised by ouabain. In cells energized by glucose and exposed to NMDA without ouabain, KB-R7943 reduced NMDA-elicited ionic currents by 19% but failed to inhibit 45Ca2+ accumulation. It appears that a large part of NMDA-induced Ca2+ influx in depolarized and glucose-deprived cells is mediated by reverse Na/Ca exchange. A high level of reverse Na/Ca exchange operation is maintained by a sustained Na+ influx via NMDA channels and depolarization of the plasma membrane. In cells energized by glucose, however, most Ca2+ enters directly via NMDA channels because Na,K-ATPase regenerating Na+ and K+ concentration gradients prevents Na/Ca exchange reversal. Since under these conditions Na/Ca exchange extrudes Ca2+, its inhibition destabilizes Ca2+ homeostasis.  相似文献   

13.
Plasma-membrane vesicles prepared from the liver of rats fed either a low-(LP) or a high-protein (HP) diet exhibited Na(+)-dependent active transport of alanine and serine. The process gave apparent kinetic parameters compatible with a single saturable component for both amino acids. Na,K-ATPase (EC 3.6.1.37), marker of the basolateral domain of the hepatocyte plasma-membrane, was chosen as reference for the expression of amino acid transport in vesicle preparations. The high-protein diet induced a significant increase in liver Na,K-ATPase activity also found in corresponding plasma-membrane preparations, in parallel with an increase in the capacity towards amino acid transport. This suggests that in rats fed the high protein diet, transcellular Na+ exchange, although increased, remains well balanced. N-Methylaminoisobutyric acid (MeAIB), due to its poor velocity, proved unsuitable to distinguish between systems A and ASC in the experimental model. Comparing Na(+)- and Li(+)-driven transport, a family of carriers with strict Na(+)-dependency (A-like) was evidenced in LP vesicles but not in HP vesicles. The sensitivity to the lowering of the pH from 7.5 to 6.5 in the external medium was similar in both type of vesicles when Na+ was the driving ion. In the HP vesicles the Li(+)-tolerant, pH-insensitive component (ASC-like) was increased in parallel with overall Na(+)-dependent transport. These functional properties suggest that the carriers involved in the stimulation of transport in HP vesicles are composite in nature. Increasing concentrations of an amino acid mixture mimicking the changes of portal aminoacidemia inhibited the transport of alanine and of serine. The degree of inhibition was correlated with the relative concentration of substrate and was independent of the nutritional treatment.  相似文献   

14.
Using cupric phenanthroline as a cross-linking agent, we have shown that melittin induced time-dependent aggregations of Na,K-ATPase in microsomal fractions and in preparations of purified Na,K-ATPase from duck salt glands. Incubation of melittin with these preparations also led to the progressive loss of Na,K-ATPase activity. At melittin/protein molar ratio of 5:1, we did not observe inhibition of Na,K-ATPase in the microsomal fraction but the process of enzyme aggregation occurred. At higher melittin/protein molar ratios (10:1 and 30:1), the inhibition of the enzyme and its aggregation proceeded simultaneously but the rates of these processes and maximal values achieved were different. At a melittin/protein ratio of 30:1, Na,K-ATPase inhibition may be described as a biexponential curve with the values for pseudo-first order rate constants being 2.7 and 0.15 min−1. However, the aggregation may be presented by a monoexponential curve with a pseudo-first order rate constant of 0.15 min−1. In purified preparations of Na,K-ATPase, the maximal aggregation (about 90%) was achieved at a melittin/protein molar ratio of 2:1, and a further increase in the melittin/protein ratio increased the rate of aggregation but did not affect the value of maximal aggregation. The results show that melittin induced both aggregation and inhibition of Na,K-ATPase but these two processes proceeded independently.  相似文献   

15.
Phospholipase C (PLC) influences cardiac function. This study examined PLC isozymes of the cardiac sarcolemma (SL) membrane and in the cytosol compartment in isolated perfused rat hearts subjected to global ischemia for 30 min followed by up to 30 min of reperfusion. Although the total SL PLC activity was decreased in ischemia and increased upon reperfusion, differential changes in PLC isozymes were detected. PLC beta(1) mRNA and SL protein abundance and activity were increased in ischemia, with concomitant decreases in activity and protein level in the cytosol. On the other hand, upon reperfusion, PLC beta(1) activity was decreased, but remained higher than control values. Although no change in the PLC delta(1) mRNA level in ischemia was detected, SL PLC delta(1) activity and content were depressed. Furthermore, in the cytosol, PLC delta(1) activity was increased, but the protein level decreased. SL PLC gamma(1) activity was decreased, independent of gene expression and protein content; however, decreases in the activity and protein abundance were detected in the cytosol. Increases in PLC gamma(1) and delta(1) activities occurred upon reperfusion, but were not accounted for by altered mRNA and protein levels. The results indicate that ischemia-reperfusion induces differential changes in PLC isozymes.  相似文献   

16.
The effect of insulin on the activity of Na, K-ATPase was studied in rat brain microsomes. Addition of insulin to the incubation medium in a dose of 0.18 U/ml coupled with strophanthine did not change the enzyme activity. The raising of the hormone dose to 0.36 U/ml was accompanied by inhibition of the enzyme activity. The incubation duration (10 and 30 min) did not influence the Na-pump. Preincubation of brain microsomes with insulin for 5 min significantly activated Na, K-ATPase. It has been thus demonstrated that insulin is capable of influencing the activity of Na, K-ATPase of rat brain microsomes in vitro. The effect obtained depends both on the dose of the hormone introduced into the incubation medium and the experimental conditions.  相似文献   

17.
Different subunit aggregates of the Na,K-ATPase may be formed depending on the method used to solubilize and purify the enzyme. We have studied the thermal unfolding of detergent-solubilized and dipalmitoylphosphatidylcholine/ dipalmitoylphosphatidylethanolamine liposome-reconstituted forms of the Na,K-ATPase by circular dichroism (CD) spectroscopy and p-nitrophenylphosphatase activity. The ellipticity at 222 nm of the solubilized and reconstituted forms showed a sigmoid decrease in the absolute value of the signal of 36 and 31% with T(50%) of 44 and 42 degrees C, respectively. The catalytic activity was reduced in two steps with T(50%) of 32 and 52 degrees C in the detergent-solubilized enzyme and T(50%) of 25 and 53 degrees C in the reconstituted enzyme. The reduction in catalytic activity of the detergent-solubilized enzyme was bi-exponential with t(1/2) of 8.3 and 67.9 min, resulting in the total loss of activity after 120 min. However, under the same conditions, the ATPase activity of the reconstituted enzyme was reduced by approx 35% with a t(1/2) of 145 min. The results suggest that the alpha- and beta-subunits present different thermal stability that may be modulated by the nature of the co-solvent (detergent or lipid) used in the preparations of the Na,K-ATPase. In addition, distinct processes of beta-subunit displacement and alpha-alpha-subunit aggregate formation may also contribute to the changes in both the CD spectra and the enzyme activity. Furthermore, we have demonstrated the protective role of the phospholipid bilayer in the reconstituted enzyme compared with the detergent-solubilized enzyme.  相似文献   

18.
Pig kidney Na/K-ATPase preparations showed a positive cooperative effect for pNPP in Na-pNPPase activity. Measurements of the Na-pNPPase activity, Na-ATPase activity and the accumulation of phosphoenzyme (EP) under conditions of pNPP saturation showed several different ATP affinities. The presence of pNPP reduced both the maximum amount of EP and Na-ATPase activity to half showing a value of 4 and a 3,700-fold reduced ATP affinity for EP formation, and a 7 and 1,300-fold reduced affinity for Na-ATPase activity. The presence of low concentrations of ATP in the phosphorylation induced a 2-fold enhancement in Na-pNPPase activity despite a reduction in available pNPP sites. However, higher concentrations of ATP inhibited the Na-pNPPase activity and a much higher concentration of ATP increased both the phosphorylation and Na-ATPase activity to the maximum levels. The maximum Na-pNPPase activity was 1.7 and 3.4-fold higher without and with ATP, respectively, than the maximum Na-ATPase activity. These data and the pNPP dependent reduction in both Na-ATPase activity and the amount of enzyme bound ATP provide new evidence to show that ATP, pNPP and ATP with pNPP, respectively, induce different subunit interactions resulting a difference in the maximum Na(+)-dependent catalytic activity in tetraprotomeric Na/K-ATPase.  相似文献   

19.
Using bilateral carotid artery occlusion in adult gerbils we examined the effects of ischemia and ischemia/reperfusion on cerebral phospholipid content and Na+,K+-ATPase (EC 3.6.1.3) activity. In contrast to the large changes in phospholipid content and membrane-bound enzyme activity that have been observed in liver and heart tissues, we observed relatively small changes in the cerebral content of total phospholipid, phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE) following ischemic intervals of up to 240 min. Following 15 min of ischemia the cerebral content of sphingomyelin (SM) was decreased to less than 50% of control values but returned to near-normal levels with longer ischemic periods. Significant decreases in the cerebral content of phosphatidylinositol (PI) and phosphatidic acid (PA) were observed following shorter intervals of ischemia (15-45 min). Na+,K+-ATPase activity of cerebral homogenates prepared from the brains of gerbils subjected to 30-240 min of ischemia was decreased but significantly different from control activity only after 30 min of ischemia (-29%, p less than or equal to 0.05). With the exception of PS, reperfusion for 60 min following 60 min of ischemia resulted in marked increases in cerebral phospholipid content with PC, SM, PI, and PA levels exceeding and PE levels equal to preischemic values. Longer periods of reperfusion (180 min) resulted in decreases in cerebral phospholipid content toward (PC, SM, PI, and PA) or below (PE) preischemic levels. In contrast, the cerebral content of PS significantly decreased during reperfusion (-51% at 60 min, p less than or equal to 0.05) and remained below preischemic values even after 180 min of reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A method for the assay of Na,K-ATPase activity of unpurified synaptosomal fraction obtained from the microquantities (2--3 mg of fresh tissue) of the rat cerebral cortex is described. This method is based on the fluorimetric determination of ADP formed in the course of ATPase reaction. The method is highly sensitive and may be used to determine the membrane preparations Na,K-ATPase activity with the protein content of 0.05--10.0 microgram per sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号