首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
The infectious cycle of human cytomegalovirus (HCMV) is intricately linked to the host's cell cycle. Viral gene expression can be initiated only in G0/G1 phase. Once expressed, the immediate-early gene product IE2 prevents cellular DNA synthesis, arresting infected cells with a G1 DNA content. This function is required for efficient viral replication in vitro. A prerequisite for addressing its in vivo relevance is the characterization of cell cycle-regulatory activities of CMV species for which animal models have been established. Here, we show that murine CMV (MCMV), like HCMV, has a strong antiproliferative capacity and arrests cells in G1. Unexpectedly, and in contrast to HCMV, MCMV can also block cells that have passed through S phase by arresting them in G2. Moreover, MCMV can also replicate in G2 cells. This is made possible by the cell cycle-independent expression of MCMV immediate-early genes. Transfection experiments show that of several MCMV candidate genes, only immediate-early gene 3 (ie3), the homologue of HCMV IE2, exhibits cell cycle arrest activity. Accordingly, an MCMV ie3 deletion mutant has lost the ability to arrest cells in either G1 or G2. Thus, despite interspecies variations in the cell cycle dependence of viral gene expression, the central theme of HCMV IE2-induced cell cycle arrest is conserved in the murine counterpart, raising the possibility of studying its physiological relevance at the level of the whole organism.  相似文献   

3.
The cellular response to viral infection often includes activation of pathways that shut off protein synthesis and thereby inhibit viral replication. In order to enable efficient replication, many viruses carry genes such as the E3L gene of vaccinia virus that counteract these host antiviral pathways. Vaccinia virus from which the E3L gene has been deleted (VVDeltaE3L) is highly sensitive to interferon and exhibits a restricted host range, replicating very inefficiently in many cell types, including human fibroblast and U373MG cells. To determine whether human cytomegalovirus (CMV) has a mechanism for preventing translational shutoff, we evaluated the ability of CMV to complement the deficiencies in replication and protein synthesis associated with VVDeltaE3L. CMV, but not UV-inactivated CMV, rescued VVDeltaE3L late gene expression and replication. Thus, complementation of the VVDeltaE3L defect appears to depend on de novo CMV gene expression and is not likely a result of CMV binding to the cell receptor or of a virion structural protein. CMV rescued VVDeltaE3L late gene expression even in the presence of ganciclovir, indicating that CMV late gene expression is not required for complementation of VVDeltaE3L. The striking decrease in overall translation after infection with VVDeltaE3L was prevented by prior infection with CMV. Finally, CMV blocked both the induction of eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation and activation of RNase L by VVDeltaE3L. These results suggest that CMV has one or more immediate-early or early genes that ensure maintenance of a high protein synthetic capacity during infection by preventing activation of the PKR/eIF2alpha phosphorylation and 2-5A oligoadenylate synthetase/RNase L pathways.  相似文献   

4.
5.
6.
BACKGROUND: Cytomegalovirus (CMV) is the most significant infectious cause of congenital anomalies of the central nervous system caused by intrauterine infection in humans. The timing of infection and the susceptibility of cells in early gestational stages are not well understood. In this study we investigated the susceptibility of embryonic stem (ES) cells to CMV infection during differentiation. METHODS: ES cell lines were established from transgenic mice integrated with the murine CMV (MCMV) immediate-early (IE) promoter connected with a reporter lacZ gene. The susceptibility of the ES cells was analyzed in terms of viral gene expression and viral replication after induction of differentiation. RESULTS: ES cells were nonpermissive to MCMV infection in the undifferentiated state. Upon differentiation, permissive cells appeared approximately 2 weeks after the leukemia inhibitory factor was removed. Upon neural differentiation by retinoic acid (RA), glial cells showed specific susceptibility in terms of expression of the viral antigen. The MCMV IE promoter was not activated in ES cells from the transgenic mice. Activation of the IE promoter was detected approximately 2 weeks after induction of differentiation and observed predominantly in glial cells. Upon MCMV infection of the ES cells, viral infection was correlated with the activation of the IE promoter. CONCLUSIONS: ES cells are nonpermissive to MCMV infection and acquire permissiveness about 2 weeks after induction of differentiation, especially in glial cells. Acquisition of permissiveness in differentiated ES cells may be associated with activation of the IE promoter.  相似文献   

7.
There is increasing evidence for a connection between DNA replication and the expression of adjacent genes. Therefore, this study addressed the question of whether a herpesvirus origin of replication can be used to activate or increase the expression of adjacent genes. Cell lines carrying an episomal vector, in which reporter genes are linked to the murine cytomegalovirus (MCMV) origin of lytic replication (oriLyt), were constructed. Reporter gene expression was silenced by a histone-deacetylase-dependent mechanism, but was resolved upon lytic infection with MCMV. Replication of the episome was observed subsequent to infection, leading to the induction of gene expression by more than 1000-fold. oriLyt-based regulation thus provided a unique opportunity for virus-induced conditional gene expression without the need for an additional induction mechanism. This principle was exploited to show effective late trans-complementation of the toxic viral protein M50 and the glycoprotein gO of MCMV. Moreover, the application of this principle for intracellular immunization against herpesvirus infection was demonstrated. The results of the present study show that viral infection specifically activated the expression of a dominant-negative transgene, which inhibited viral growth. This conditional system was operative in explant cultures of transgenic mice, but not in vivo. Several applications are discussed.  相似文献   

8.
The murine cytomegalovirus (MCMV) immediate-early gene 1 (IE1) encodes an 89-kDa phosphoprotein (pp89) which plays a key role in protecting BALB/c mice against the lethal effects of the MCMV infection. In this report, we have addressed the question of whether "naked DNA" vaccination with a eukaryotic expression vector (pcDNA-89) that contains the MCMV IE1 gene driven by a strong enhancer/promoter can confer protection. BALB/c mice were immunized intradermally with pcDNA-89 or with the plasmid backbone pcDNAI/Amp (pcDNA) and then challenged 2 weeks later with either a lethal or a sublethal intraperitoneal dose of the K181 strain of MCMV. Variable results were obtained for the individual experiments in which mice received a lethal challenge. In four separate trials, an average of 63% of the mice immunized with pcDNA-89 survived, compared with 18% of the mice immunized with pcDNA. However, in two other trials there was no specific protection. The results of experiments in which mice were injected with a sublethal dose of MCMV were more consistent, and significant decreases in viral titer in the spleen and salivary glands of pcDNA-89-immunized mice were observed, relative to controls. At the time of peak viral replication, titers in the spleens of immunized mice were reduced 18- to >63-fold, while those in the salivary gland were reduced approximately 24- to 48-fold. Although DNA immunization elicited only a low level of seroconversion in these mice, by 7 weeks postimmunization the mice had generated a cytotoxic T-lymphocyte response against pp89. These results suggest that DNA vaccination with selected CMV genes may provide a safe and efficient means of immunizing against CMV disease.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
The potential of neural stem and progenitor cell (NSPC) transplantation in neurodegenerative disease raises a concern about immunosuppressive agents and opportunistic neurotropic pathogens that may interfere with engraftment. Cytomegalovirus (CMV) is an important opportunistic pathogen infecting the central nervous system, where it may remain latent for life, following transplacental transmission. Cyclosporine (Cs), an immunosuppressive drug used in organ transplantation, where its use is associated with CMV reactivation, suppressed murine CMV (MCMV) infection in cultured NSPCs but not in fibroblasts. This activity of Cs appears to be mediated via cyclophilin (CyP) rather than via calcineurin. First, the calcineurin-specific inhibitor FK506 failed to suppress replication. Second, the CyP-specific inhibitor NIM811 strongly suppressed replication in NSPC. NSPCs maintained in the presence of NIM811 retained viral genomes for several weeks without detectable viral gene expression or obvious deleterious effects. The withdrawal of NIM811 reactivated viral replication, suggesting that the inhibitory mechanism was reversible. Finally, inhibition of endogenous CyP A (CyPA) by small interfering RNA also inhibited replication in NSPCs. These results show that MCMV replication depends upon cellular CyPA pathways in NSPCs (in a specific cell type-dependent fashion), that CyPA plays an important role in viral infection in this cell type, and that inhibition of viral replication via CyP leads to persistence of the viral genome without cell damage. Further, the calcineurin-signaling pathway conferring immunosuppression in T cells does not influence viral replication in a detectable fashion.  相似文献   

18.
Despite its high coding capacity, murine CMV (mCMV) does not encode functional enzymes for nucleotide biosynthesis. It thus depends on cellular enzymes, such as ribonucleotide reductase (RNR) and thymidylate synthase (TS), to be supplied with deoxynucleoside triphosphates (dNTPs) for its DNA replication. Viral transactivation of these cellular genes in quiescent cells of host tissues is therefore a parameter of viral fitness relevant to pathogenicity. Previous work has shown that the IE1, but not the IE3, protein of mCMV transactivates RNR and TS gene promoters and has revealed an in vivo attenuation of the mutant virus mCMV-ΔIE1. It was attractive to propose the hypothesis that lack of transactivation by IE1 and a resulting deficiency in the supply of dNTPs are the reasons for growth attenuation. Here, we have tested this hypothesis with the mutant virus mCMV-IE1-Y165C expressing an IE1 protein that selectively fails to transactivate RNR and TS in quiescent cells upon transfection while maintaining the capacity to disperse repressive nuclear domains (ND10). Our results confirm in vivo attenuation of mCMV-ΔIE1, as indicated by a longer doubling time in host organs, whereas mCMV-IE1-Y165C replicated like mCMV-WT and the revertant virus mCMV-IE1-C165Y. Notably, the mutant virus transactivated RNR and TS upon infection of quiescent cells, thus indicating that IE1 is not the only viral transactivator involved. We conclude that transactivation of cellular genes of dNTP biosynthesis is ensured by redundancy and that attenuation of mCMV-ΔIE1 results from the loss of other critical functions of IE1, with its function in the dispersal of ND10 being a promising candidate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号