首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
In this investigation, we characterize the embryonic and adult actins and describe the embryonic expression of a muscle actin in the ascidian Styela. Two-dimensional polyacrylamide gel electrophoresis showed that embryos, tadpole larvae, and adult organs contain three major and two minor isoforms of actin. Two of the major isoforms, which are present in the mantle, branchial sac, alimentary tract, and gonads of adults and in eggs, embryos, and heads and tails of tadpoles, are likely to be cytoplasmic actins. The third major isoform, which was enriched in the mantle and branchial sac of adults and localized primarily in the tails of tadpoles, is a muscle actin. The muscle actin isoform was not detected in eggs and early embryos. Radioactivity incorporation studies showed that the cytoplasmic actins were synthesized throughout early development, but muscle actin synthesis was first detected between the 16- and 64-cell stages, 2-3 hr after fertilization. Two lines of evidence indicate that embryonic muscle actin synthesis is directed in part by maternal mRNA. First, poly(A)+ RNA isolated from unfertilized eggs directed the synthesis of muscle actin in an mRNA-dependent reticulocyte lysate. Second, muscle actin was synthesized in anucleate egg fragments. Arguments are also presented that muscle actin synthesis is not directed exclusively by maternal mRNA. It is concluded that embryonic and adult Styela exhibit actin heterogeneity, that one of the actin isoforms is a muscle actin, and that the muscle actin is synthesized during embryogenesis under the direction of maternal and zygotic mRNA.  相似文献   

6.
7.
8.
Summary Germinated zygotic embryos of Pacific yew (Taxus brevifolia) were transiently transformed with the expression vector pBl121, as demonstrated by expression of the β-glucuronidase (GUS) gene. Embryos exhibited sectors of blue color following treatment with DNA and dimethyl sulfoxide (optimal concentration of 2.25%). However, transient expression depended on the presence of ions in the buffer, as no GUS activity was observed when deionized water was used in place of other buffers. GUS gene expression was dependent on the developmental stage of the embryo, since the frequency of GUS expression was elevated in embryos incubated with the expression vector during a period from 4 to 8 wk after culture of DCR medium. In addition, the utility of using zygotic embryos from mature seeds for tissue culture and transient expression experiments was also examined. Completed as partial fulfillment of the Masters of Science Degree in the Biological Sciences, Southern Illinois University at Edwardsville. Each author contributed significantly to this work.  相似文献   

9.
10.
11.
Cytoplasm from muscle lineage blastomeres of an ascidian embryo can cause cells of a nonmuscle lineage to produce larval tail muscle acetylcholinesterase. Muscle cytoplasm was partitioned microsurgically into epidermal lineage blastomeres at the eight-cell stage. Posterior half-embryos (the two B3 cells) of Ascidia nigra were obtained first by separating the anterior and posterior blastomere pairs at the four-cell stage. At third cleavage, the two B3 cells divide into an ectodermal cell pair that gives rise solely to epidermal tissues, and a mesodermal-endodermal blastomere pair from which the tail muscle cells are derived. When the ectodermal and mesendodermal blastomere pairs were isolated from one another by microsurgery and reared as partial embryos, only cells originating from the mesendodermal blastomeres produced a histochemical acetylcholinesterase reaction. Immediately after cleavage of the isolated B3 cells into ectodermal and mesendodermal cell pairs, the cleavage furrows could be made to disappear by pressing firmly on the mesendodermal cells with a microneedle. Repeated up and down pressure with the microneedle at a new position across the mesendodermal cells caused furrows to reestablish in the new position, thereby incorporating mesodermal cytoplasm and increasing the size of the ectodermal cells. The cytoplasmically altered ectodermal blastomere pairs, which became detached from the mesendodermal cells by this microsurgical procedure, continued to divide and were reared to “larval” stages. One-third of these epidermal partial larvae produced patches of cells containing acetylcholinesterase. These results lend further support to the theory that choice of particular differentiation pathways (embryonic determination) in ascidian embryos is mediated by segregation of specific egg cytoplasmic determinants.  相似文献   

12.
Tadpole larvae of ascidians show the basic body plan of chordates. An ascidian larva consists of only few types of cells and has a relatively small number of cells. Cell lineages are simple and invariant among individuals and have been described in detail. The clonal restriction of developmental fate takes place considerably early in development. I review here the temporal relationship between fate restriction, determination and initiation of lineage-specific gene expression during ascidian embryogenesis. In several cases, determination and initiation of gene expression precede fate restriction and occur during the last cell cycle before fate restriction. Such a phenomenon contradicts the traditional view of fate specification and has several important implications for the understanding of the way in which cells execute the developmental pathway.  相似文献   

13.
Whether all descendants of germline founder cells inheriting the germ plasm can migrate correctly to the genital ridges and differentiate into primordial germ cells (PGCs) at tadpole stage has not been elucidated in Xenopus. We investigated precisely the location of descendant cells, presumptive primordial germ cells (pPGCs) and PGCs, in embryos at stages 23-48 by whole-mount in situ hybridization with the antisense probe for Xpat RNA specific to pPGCs and whole-mount immunostaining with the 2L-13 antibody specific to Xenopus Vasa protein in PGCs. Small numbers of pPGCs and PGCs, which were positively stained with the probe and the antibody, respectively, were observed in ectopic locations in a significant number of embryos at those stages. A few of the ectopic PGCs in tadpoles at stages 44-47 were positive in TdT-mediated dUTP digoxigenin nick end labeling (TUNEL) staining. By contrast, pPGCs in the embryos until stage 40, irrespective of their location and PGCs in the genital ridges of the tadpoles at stages 43-48 were negative in TUNEL staining. Therefore, it is evident that a portion of the descendants of germline founder cells cannot migrate correctly to the genital ridges, and that a few ectopic PGCs are eliminated by apoptosis or necrosis at tadpole stages.  相似文献   

14.
The ascidian belongs to the sister group of vertebrates and shares many features with them. The gene regulatory network (GRN) controlling gene expression in ascidian embryonic development leading to the tadpole larva has revealed evolutionarily conserved gene circuits between ascidians and vertebrates. These conserved mechanisms are indeed useful to infer the original developmental programs of the ancestral chordates. Simultaneously, these studies have revealed which gene circuits are missing in the ascidian GRN; these gene circuits may have been acquired in the vertebrate lineage. In particular, the GRN responsible for gene expression in ectodermal cells of ascidian embryos has revealed the genetic programs that regulate the regionalization of the brain, formation of palps derived from placode-like cells, and differentiation of sensory neurons derived from neural crest-like cells. We here discuss how these studies have given insights into the evolution of these traits.  相似文献   

15.
Li W  Zhang J  Yu W  Liu G  Chen Q 《Zoological science》2003,20(11):1389-1393
The expression of mouse two-cell stage specific genes was studied using the modified DDRT-PCR method, which overcame the paucity of the experimental materials of preimplantation embryos. Embryo tissues equivalent to that of four blastomeres are sufficient for amplification of target genes as visualized using polyacrylamide gel. Sequence analyses and reverse Northern blots indicate that the genes of ATPase 6 and Ywhaz are expressed specifically in two-cell embryos. ATPase 6 is essential for one-cell to two-cell transition and plays an important role in establishment of oxidative phosphorylation, while Ywhaz is related to initiating cellular communication system.  相似文献   

16.
The two muscle lineage blastomeres were removed surgically from Ciona intestinalis embryos at the eight-cell stage and allowed to develop in isolation. Acetylcholinesterase, an enzyme that occurs only in muscle cells of the developing larva, was detected histochemically in progeny cells of these isolated blastomers. Acetylcholinesterase differentiation in muscle lineage cells is not, therefore, dependent on inductive interactions with embryonic tissues derived from other eight-cell stage blastomeres.  相似文献   

17.
18.
19.
Wu X  Shi Z  Cui M  Han M  Ruvkun G 《PLoS genetics》2012,8(3):e1002542
The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号