首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. From the 20th day to the 30th day of life, the mitotic rhythm is progressively induced by a reduction in nocturnal values, while diurnal rhythms remain unchanged. Mitotic peaks emerge at 10.00 hours.
A labelling index wave occurs 8 hr before the corresponding mitotic wave, with a peak at 02.00 hours and a minimum in the evening, coincidental with the acrophase of plasma corticosterone level (activity phase).
Labelled mitoses curves and metaphase accumulation after colchicin injection show that the duration of the S, G2 and M phases remain approximately constant and that the circadian variation is due to a variation in the rate of cells that enter these successive phases. During the synchronization period (from day 20 to 30), the growth fraction decreases progressively. Adrenalectomy at this time is followed by a higher cell proliferation and all rhythms disappear after 2 days.
Corticosterone injected before the triggering of the rhythmic activity in 17-day-old rats immediately reduces the labelling index, while the mitotic index is decreased 10 hr later; this delay is equal to the S + G2 duration.
The results are discussed. They favour the hypothesis that the circadian variation of corticosterone is responsible for the induction of a circadian variation in developmental cell proliferation by inhibition of the G1-S transition when it is higher in the evening.
The circadian rhythm of hepatic cell proliferation in rats appears on the 20th day of life, when the hypothalamo-adrenal axis is mature enough for circadian activity to occur.  相似文献   

2.
A detailed study of the cellular proliferation kinetics in interfollicular plucked and unplucked mouse skin has been made in Swiss albino mice, using tritiated thymidine autoradiography. Diurnal variations in mitotic and labelling indices were demonstrated in both systems.
The mean cell cycle times for unplucked and plucked skin were estimated by four different methods and found to be 100 ± 10 and 47 ± 3 hr respectively. Most of the difference was due to the shortening of G1 phase after plucking. Repeated labelling at intervals shorter than the DNA synthesis times resulted in all the basal layer cells becoming labelled, so that the growth fraction was unity, in unplucked and plucked skin.
A well-defined second wave of labelled mitoses was seen at about 100 hr after labelling the unplucked (i.e. normal) mouse skin.
A double labelling technique using 14C-TdR and 3H-TdR with a single layer of emulsion gave reasonable values for the duration of the DNA synthesis phase.  相似文献   

3.
The duration of the mitotic cycle and of its components was analysed for each of the six successive generations of differentiating spermatogonia (A1, A2, A3, A4, intermediate and B), using radioautographed whole mounts of seminiferous tubules from testes of adult Sprague-Dawley rats. Cell cycles were determined from two successive waves of per cent labeled metaphases obtained during the period of 81 hr after a single dose of 3H-thymidine. Except for the A1 spermatogonia, all spermatogonial types (A2 to B) had similar cell cycle durations of 41-42.5 hr and comparable pre-DNA synthesis phases (G1) of 11-13 hr. Although the combined duration of DNA synthesis (S) and the post-synthesis phase (G2) remained identical for all the cell types including A1, there was a progressive lengthening of the S period at the expense of G2 during the process of spermatogonial maturation. This change was most marked during the transition from A1 to A3 spermatogonia when the S period increased from 14 hr to 21 hr, and the G2 phase shortened from 13 hr to 7.5 hr. This feature seems to be unique to germ cells and may be associated with an increasing amount of heterochromatin in the nucleus. Excluding the development of type A1 cells, the entire process of spermatogonial maturation lasted for 208 hr. Combined data on cell cycle times indicated that every 313 hr or 13 days, a new sequence of spermatogonial differentiation was initiated by the A1 cells. This was equivalent to the duration of one 'cycle' of the seminiferous epithelium as measured by other techniques.  相似文献   

4.
Abstract.   Objectives : This study is to evaluate the effect of separase depletion on cell cycle progression of irradiated and non-irradiated cells through the G2/M phases and consecutive cell survival. Materials and methods : Separase was depleted with siRNA in two human non-small cell lung carcinoma (NSCLC) cell lines. Cell cycle progression, mitotic fraction, DNA repair, apoptotic and clonogenic cell death were determined. Results : By depletion of endogenous separase with siRNA in NSCLCs, we showed that separase affects progression through the G2 phase. In non-irradiated exponentially growing cells, separase depletion led to an increased G2 accumulation from 17.2% to 29.1% in H460 and from 15.7% to 30.9% in A549 cells and a decrease in mitotic cells. Depletion of separase significantly ( P <  0.01) increased the fraction of radiation-induced G2 arrested cells 30–56 h after irradiation and led to decrease in the mitotic fraction. This was associated with increased double-strand break repair as measured by γ-H2AX foci kinetics in H460 cells and to a lesser extent in A549 cells. In addition, a decrease in the expression of mitotic linked cell death after irradiation was found. Conclusions : These results indicate that separase has additional targets involved in regulation of G2 to M progression after DNA damage. Prolonged G2 phase arrest in the absence of separase has consequences on repair of damaged DNA and cell death.  相似文献   

5.
Abstract. Differentiation of mammalian cells is accompanied by reduced rates of proliferation and an exit from the cell cycle. Human leukemic cells HL60 present a widely used model of neoplastic cell differentiation, and acquire the monocytic phenotype when exposed to analogs of vitamin D3 (VD3). The maturation process is accompanied by two blocks in the cell cycle: an arrest in the G1/G0 phase, and a recently described G2+ M block. In this study we have analyzed the traverse of the cell cycle phases of the well-differentiating HL60-G cells exposed to one of ten analogs of VD3, and compared the cell cycle effects of each compound with its potency as a differentiation-inducing agent. We found that in general there was a good correlation between the effects of these compounds on the cell cycle and on differentiation, but the best cell cycle predictor of differentiation potency was the extent of accumulation of the cells in the G2 compartment. All analogs induced a marked decrease in the mitotic index, and polynucleation of HL60 cells was produced, especially by compounds which were effective as inducers of differentiation. Time course studies showed that induction of differentiation was accompanied by a transient increase of the proportion of cells in the G2+ M compartment, but preceded the G1 to S, and the G2 compartment blocks. These studies indicate that complex changes in the cell cycle traverse accompany, but do not precede, the acquisition of the monocytic phenotype by HL60 cells.  相似文献   

6.
Rats were injected with tritiated thymidine and sacrificed at various time intervals up to 24 hr. the extracted incisors were decalcified, cut sagittally, dipped into liquid emulsion exposed for 14 days, developed and stained. the counting consisted of an exact mapping and numbering of the cells.
The inner enamel epithelium consists of two compartments: proliferative and mature cells. the first may be further subdivided into blasts and metablasts. Each dividing blast yields one blast and one metablast. the metablasts continue to divide further, at least once, yielding again two metablasts.
The kinetic parameters of this population are: generation time 22 hr, synthesis time 4.5 hr, mitotic time 30 min, G2 time 2 hr and G1 time 15 hr. the daily cell production of the proliferative compartment equals its size.  相似文献   

7.
Abstract. Glucose is normally required as the energy source and for the proliferation of neoplastic cells. For Ehrlich ascites tumour cells, kept under glucose-free culture conditions, this requirement was alleviated by uridine, indicating that the supply of ribose is obligatory for sustaining growth capacity.
In a 96-hr culture experiment with mouse-derived cells, the increase in cell number from cultures supplemented with 5 mM uridine was 50–70%, whilst lactate production was 5% that of controls. An increase in the number of multinucleate cells was observed from cell-smears; DNA histograms indicated the presence of cells with a DNA content higher than 4c and an increased portion of cells in G2 phase. For precise determination of changes in cell cycle distribution on transfer of cells from glucose-supplemented to glucose-free conditions, the progression of phase-accumulated cells (by centrifugal elutriation) was monitored by DNA distribution analysis; G2 cells continued the cycle at a rate comparable to controls but were delayed, in the following cycle, predominantly in S and G2 phases. This was also observed with G1 cells from a G1-accumulated fraction in the first cycle.
The addition of glucose to cells kept for some hours in glucose-free, uridine-supplemented medium resulted in an immediate increase in mitotic index (amplification by the colcemid method).
The results are interpreted and support our concept that the delivery of compounds, necessary for normal growth, i.e. hexoses for glycoproteins and glycolipids, are limited as a consequence of the 'metabolic channelling' of pentose from uridine in Ehrlich ascites tumour cells. Therefore, the constantly lowered growth-rate in uridine-supplemented cells observed with long-term culture experiments could reflect an adaption of growth-cycle to these limitations.  相似文献   

8.
Abstract. The kinetics of isthmal cells in mouse antrum were examined in three ways: (a) the duration of cell cycle and DNA-synthesizing (S) stage was measured by the 'fraction of labelled mitoses' method; (b) the duration of interphase and mitotic phases was determined from how frequently they occurred; and (c) mice were killed at various intervals after an intravenous injection of 3H-thymidine to time the acquisition of label by the various phases of mitosis.
The duration of the isthmal cell cycle was found to be 13.8 hr and that of the DNA-synthesizing (S) stage, 5.8 h. Estimates for the duration of the G1 and G2 stages were 6.8 and 1.0 hr, respectively.
From the frequency of mitotic phases, defined as indicated in the preceding article (El-Alfy & Leblond, 1987) and corrected for the probability of their occurence, it was estimated that prophase lasted 4.8 hr; metaphase, 0.2 hr; anaphase, 0.06 hr and telophase, 3.3 hr, while the interphase lasted 5.4 hr. In accordance with this, the duration of the whole mitotic process was 8.4 hr.
Ten minutes after an intravenous injection of 3H-thymidine, 38% of labelled isthmal cells were in interphase and 62% in early or mid prophase, while cells in late prophase and other mitotic phases were unlabelled. After 60 min, label was in late prophase, after 120 min, in mid telophase and after 180 min, in late telophase.
We conclude that there is overlap between some mitotic phases and cycle stages. Thus, while nuclei are at interphase during the early third of S, they are in prophase during the late two-thirds as well as during G2. Also, nuclei are in telophase during the early half of G1 but at interphase during the late half. Differences in nuclear diameter show that subdivision of both S and G1 into early and late periods is practical.  相似文献   

9.
Cell kinetic parameters of mouse granulocytic and mononuclear cells growing in colonies in agar cultures have been measured. Analysis of flash and continuous labelling studies with 3H-thymidine together with determinations of colony size, growth fraction and mitotic indices, gave the following values for the phases of the cell cycle: G1= 6·3 1·6 hr, S = 5·8 ± 1·4 hr, G2= 1·7 ± 0·1 hr and M = 0·7 ± 0·1 hr (42 ± 8 min). No difference in the cell cycle parameters of granulocytic and mononuclear cells were found in this study.
Colonies of different size from cultures of the same age group had similar labelling indices, indicating that the size of a colony is not a function of the rate of proliferation of cells in the colony. Rather, variation in colony size is probably representative of an initial delay in the onset of colony development.  相似文献   

10.
Fifteen male mosquito fish ( Gambusia affinis holbrooki ) were collected in 1989 on the 15th of each month to perform a quantitative histologic study of the annual testicular cycle including a calculation of the gonadosomatic index, testicular volume, and the total volume per testis occupied by each germ cell type. The cycle comprises two periods: spermatogenesis and quiescence. The spermatogenic period begins in April with the development of primary spermatogonia into secondary spermatogonia, spermatocytes and round spermatids. In May, the first spermatogenic wave is completed and the testicular volume begins to increase up to June when the maximum testicular volume and gonadosomatic index are reached. Germ cell proliferation with successive spermatogenetic waves continues until August. In September germ cell proliferation ceases and neither secondary spermatogonia nor spermatocytes are observed. However, spermiogenesis continues until October. In November, spermiogenesis has stopped and the testis enters the quiescent period up to April. During this period only primary spermatogonia and spermatozoa are present in the testis. In addition, a few spermatids whose spermiogenesis was arrested in November are observed. Testicular release of spermatozoa is continuous during the entire spermatogenesis period. The spermatozoa formed at the end of this period (September-October) remain in the testis during the quiescent period and are released at the beginning of the next spermatogenesis period in April. Developed Leydig cells appear all year long in the testicular interstitium, mainly around both efferent ducts and the testicular tubule sections showing S4 spermatids.  相似文献   

11.
Abstract. The initiation of DNA synthesis and further cell cycle progression in cells during and following exposure to extremely hypoxic conditions in either G1 or G2+M has been studied in human NHIK 3025 cells. Populations of cells, synchronized by mitotic selection, were rendered extremely hypoxic (< 4 p.p.m. O2) for up to 24n h. Cell cycle progression was studied from flow cytometric DNA recordings. No accumulation of DNA was found to take place during extreme hypoxia. Cells initially in G1 at the onset of treatment did not enter S during up to 24 h exposure to extreme hypoxia, but started DNA synthesis in a highly synchronous manner within 1.5 to 2.25 h after reoxygenation. The duration of S phase was only slightly affected (increased by ≅10%) by the hypoxic treatment. This suggests that the DNA synthesizing machinery either remains intact during hypoxia or is rapidly restored after reoxygenation. Cells initially in G2 at the onset of hypoxia were able to complete mitosis, but further cell cycle progression was blocked in the subsequent G^ Following reoxygenation, these cells progressed into S phase, but the initiation of DNA synthesis was delayed for a period corresponding to at least the duration of normal G1 and did not appear in a synchronous manner. In fact, cell cycle variability was found to be increased rather than decreased as a result of exposure to hypoxia starting in G2. We interpret these findings as an indication that important steps in the preparation for initiation of DNA synthesis take place before mitosis. Furthermore, the change in cell cycle duration induced by hypoxia commencing in G1 is of a nature other than that induced by hypoxia commencing in other parts of the cell cycle.  相似文献   

12.
Cytophotometric determination of single-cell DNA after repeated 3H-thymidine labelling of the JB-1 ascites tumour in the plateau phase of growth showed a massive accumulation of unlabelled cells with both G1 and G2 content. Autoradiography combined with cytophotometry or colcemid block demonstrated that some of these unlabelled cells were rapidly triggered into the cell cycle when plateau tumours were transferred to new hosts. This indicated that tumour cells may be held up in non-cycling stages corresponding to both the G1 and the G2 phase of the cell cycle.  相似文献   

13.
Abstract. Tape stripping of human skin elicits a proliferative response of a synchronously-dividing group of cells. The progress of this cohort of cells has been monitored using two windows in the cell cycle, one located in mid-S phase and the other centred around G2+ M. The cellular DNA is measured with flow cytometry, the windows are defined by two ranges in the DNA histogram.
The cohort can be described as the recruitment of cells from a pre-existing G0 compartment which consists of 76% of all proliferative cells. The duration of the S phase is calculated to be 10.2 hr and G2+ M phase 5.1 hr. The cell cycle time of 39 hr for normal human keratinocytes derived from these figures is in line with recent values obtained by different techniques.  相似文献   

14.
Monocyte kinetics were studied in seven hematologically normal individuals using in vivo pulse labeling with tritiated thymidine. Although occasional labeled cells appear in the peripheral blood within 4 or 5 hr of the administration of label, a significant outflow from the marrow begins 13–26 hr later. This interval is occupied by the G2 and M phases of the mitotic cycle since mitotic cells are not observed in the peripheral blood. The duration of the DNA synthesis phase of monocytes is measured at 34 hr ≈ 1.8 hr. Cells do not enter this phase while circulating since exposure of circulating cells to tritiated thymidine does not result in any uptake. If monocytes are not 'end'cells which have completed their mitotic activity before leaving the marrow they must at least be inhibited from further proliferative activity until they are permanently sequestered in other tissues.
The generation time is probably not less than 40 hr and data derived from the mean grain counts of labeled cells suggest that it is often more than 70 hr. The total daily output of monocytes in man is 9.4 × 108 cells per 24 hr ≈ 3.3 × 108.
Cells leave the bloodstream with a half-time of about 71 hr thereby proving themselves to be considerably more durable than neutrophils which have a half-life in the neighborhood of 6 hr.  相似文献   

15.
THE KINETICS OF GRANULOSA CELLS IN DEVELOPING FOLLICLES IN THE MOUSE OVARY   总被引:1,自引:0,他引:1  
This investigation describes the kinetics of the granulosa cells in medium-sized follicles type 3b, 4 and 5a in ovaries of 28-day-old Bagg mice. the method of labelling with 3H-thymidine followed by high resolution autoradiography is used in the experimental work, which consist of determining percentage labelled mitosis (PLM-) and continuous labelling (CL-) curves. In order to analyse the data by computer two alternative hypotheses A and B are set up. Both include the assumptions of no cell loss, exponential growth and a resting compartment Q. In hypothesis A cells from Q re-enter the mitotic cycle via the normal DNA-synthesis compartment Sp. Hypothesis B includes beside compartment Sp a special DNA-synthesis compartment Sq where only cells from Q are synthesizing DNA, and these cells re-enter the mitotic cycle via the G2 compartment. the mean transit time in Sq is considered to be longer than the mean transit time in Sq. On the basis of the hypothesis mathematical expressions for the PLM- and CL-curves are obtained, and by means of a computer the theoretical curves are fitted to the experimental values: thereby all relevant cell kinetical parameters are estimated. Hypothesis B seems to give the best fit between the theoretical and experimental curves. the estimated parameters are: mean cycle times, μc= (56.1 hr, 56.1 hr and 22.3 hr for type 3b, 4 and 5a respectively), doubling times, T D= (96.4 hr, 118.6 hr and 59.1 hr) and the proportion of cells in Q, p Q = (0.60, 0.71 and 0.69).  相似文献   

16.
The distribution of Chinese hamster cells with respect to the compartments of the cell generation cycle was studied in cultures in the stationary phase of growth in two different media. A measure of the state of depletion of the nutrient medium was formulated by defining a quantity termed the nutritive capacity of the medium. This quantity was used to verify that the cessation of cell proliferation is due to nutrient deficiencies and not to density dependent growth inhibition. Cell cultures in stationary phase were diluted into fresh medium and as growth resumed, mitotic index, cumulative mitotic index, label index and viability were measured as a function of time. The distribution of cells with respect to compartments of the cell generation cycle in stationary phase populations was reconstructed from these data. Stationary phase populations of Chinese hamster cells that retained the capacity for renewed growth when diluted into fresh medium were found to be arrested in the G1 and G2 portions of the cycle; the relative proportion of these cells in G1 increased with time in the stationary phase, but the sequence differs in the two media. In early stationary phase, in the less rich medium, more cells are in G2 than in G1. Also in this medium a fraction of the population was observed to be synthesizing DNA during stationary phase, but this fraction was not stimulated to renewed growth by dilution into fresh medium.  相似文献   

17.
We have demonstrated a method for the in situ determination of the cell cycle phases of TIG-7 fibroblasts using a laser scanning cytometer (LSC) which has not only a function equivalent to flow cytometry (FCM) but also has a capability unique in itself. LSC allows a more detailed analysis of the cell cycle in cells stained with propidium iodide (PI) than FCM. With LSC it is possible to discriminate between mitotic cells and G2 cells, between post-mitotic cells and G1 cells, and between quiescent cells and cycling cells in a PI fluorescence peak (chromatin condensation) vs. fluorescence value (DNA content) cytogram for cells stained with PI. These were amply confirmed by experiments using colcemid and adriamycin. We were able to identify at least six cell subpopulations for PI stained cells using LSC; namely G1, S, G2, M, postmitotic and quiescent cell populations. LSC analysis facilitates the monitoring of effects of drugs on the cell cycle.  相似文献   

18.
Abstract. In this report we describe the successful application of a novel microscope-based multiparameter laser scanning cytometer (LSC) to measure duration of different phases of cell cycle in HL-60 human leukaemic cell lines by the fraction of labelled mitoses (FLM) method. Exponentially growing cells were harvested after various time intervals following pulse-labelling with 5'-bromo-2'-deoxyuridine (BrdUrd), cytocentrifuged, fixed in ethanol, and then exposed to UV light to induce DNA strand breaks at the sites of incorporated BrdUrd. The 3'OH termini of the photolytically generated DNA strand breaks were labelled with BrdUTP in the reaction catalysed by exogenous terminal deoxynucleotidyl transferase (TdT), followed by FITC-labelled BrdUrd antibodies. DNA was counterstained with propidium iodide (PI). Due to differences in chromatin structure between the interphase and mitotic cells, the LSC identified the latter by virtue of their higher red (PI) fluorescence intensity values among all pixels over the measured cell. To confirm that the cells selected were indeed cells in mitosis, predominantly in metaphase, the recorded X-Y coordinates of selected cells were used to re-position the cell for their visual examination. From the time lapse analysis of percentage BrdUrd-labelled cells progressing through mitosis it was possible to calculate the duration of individual phases of the cell cycle. The duration of S (Ts) and G2+ M (TG2+M) was 8 and 3 h, respectively, and the minimal duration of G2 (TG2) was 2 h. The cell cycle time (Tc) estimated for the cohort of the most rapidly progressing cells was 13 h. The ability to automatically and rapidly discriminate mitotic cells combined with the possibility of their subsequent identification by image analysis makes LSC the instrument of choice for the FLM analysis.  相似文献   

19.
The rate of 14CO2, liberation from [14C-1]glucose was identical to that from [14C-6]glucose in spermatids, but more than the latter in spermatogonia. Rotenone (1 μM) completely inhibited 14CO2 release from [14C-1]glucose in spermatids, but decreased it only 30% in spermatogonia. The activity of glucose-6-phosphate dehydrogenase, but not 6-phosphogluconate dehydrogenase, was markedly lower in spermatocytes and spermatids than in spermatogonia. The activities of the glycolytic enzymes, glucosephosphate isomerase, fructose diphosphatase, glyceraldehyde-3-phosphate dehydrogenase and enolase, differed only slightly in spermatids and spermatogonia. It is concluded that the low glucose-6-phosphate dehydrogenase activity may contribute to the low activity of the pentose cycle in spermatocytes and spermatids.  相似文献   

20.
Abstract. The cell cycle of two lines isolated from Drosophila Kc cells was followed by flow cytofluorometry and cell counting. The first line is the 8-9K clone which grew in a medium supplemented with 5% serum; the second, named subline Kc0, grew in a serum-free medium. The stationary phase is characterized by a G2 cell accumulation: 73% in the 8-9K clone and 50% in the Kc0 subline.
When the medium was supplemented with the steroid moulting hormone 20-hydroxyecdysone, more than 90% of 8-9K cells and 65% of Kc0 cells were progressively arrested in G2. In the continuous presence of 20-hydroxyecdysone, most of the 8-9K cells remain G2-arrested; no massive G2 release into M was observed and only a few cells were able to divide. When treated for only 3 or 7 days, a transient release into M and proliferation occurred after hormone-free medium renewal, largely masked by G2 cell death. These results are discussed in comparison with other reports on cell cycle alteration induced by ecdysteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号