首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dopamine receptors in the central nervous system can be studied by measuring the specific binding of [3H]dopamine, [3H]haloperidol, d-[3H]LSD, [3H]dihydroergocryptine or [3H]apomorphine. The receptors are stereoselectively blocked by +)-butaclamol, a neuroleptic. All neuroleptics inhibit the specific binding of [3H]haloperidol in relation to their clinical potencies. The radioligand that desorbs most slowly from the receptor is [3H]apomorphine, thus making it a reliable ligand for dopamine receptors. Dopamine agonists that compete for [3H]apomorphine binding do so at concentrations that correlate with their potency in stimulating striatal adenylate cyclase. Structure-activity analysis, using [3H]apomorphine, confirms that the active dopamine-mimetic conformation is the beta rotamer of dopamine. Prolonged exposure in vitro of caudate homogenate to high concentrations of dopamine leads to increased binding of [3H]apomorphine or [3H]haloperidol, suggesting receptor "sensitization." Chronic haloperidol treatment of rats leads to an increased number of dopamine/neuroleptic receptors in the striatum, but a decrease in the pituitary.  相似文献   

2.
In mammalian systems, the physiological mineralocorticoid is aldosterone (aldo), and the physiological glucocorticoid cortisol (F), or corticosterone (B) in rats and mice. Receptors (MR) with high affinity for aldo, B and F are found in both epithelia and the central nervous system (CNS); receptors (GR) with lower affinity for F and B, and still lower for aldo, are found in essentially all cells. Both MR and GR bind to and activate canonical pentadecamer response elements in transfected cells and in epithelia, wherein MR aldo, B and F all act as agonists. In vivo, in epithelial cells a low Km, NAD-dependent, 11β hydroxysteroid dehydrogenase (11βOHSD) converts B and F, but not aldo, to receptor-inactive 11-keto congeners, thus allowing aldo to occupy epithelial MR and produce sodium retention. The CNS differs markedly in terms of MR/GR in a number of ways: (i) most but not all MR in the CNS are functionally unprotected, despite the presence of a low Km, NADP-preferring 11βOHSD, so that they operate as high-affinity GR; (ii) in such CNS ‘MR’, aldo antagonizes the effects of B, and vice versa, in contrast with epithelia; (iii) also in contrast with epithelia, activated GR in the CNS do not mimic activated MR, suggesting considerable if not total specificity at the response element level. These differences suggest that glucocorticoids have two distinct domains of action in the CNS, mediated by ‘MR’ at low B/F concentrations, and GR at higher concentrations; secondly, they suggest that the nuclear recognition and response elements mediating these effects are other than canonical pentadecamer sequences.  相似文献   

3.
4.
5.
J W Daly 《Life sciences》1976,18(12):1349-1358
Extensive studies of the past seven years have provided fundamental information on the pharmacological properties of receptors controlling formation of cyclic AMP in brain slices and homogenates. Receptors for adenosine, α- and β-adrenergic agonists, dopamine, serotonin, H1- and H2-histaminergic agonists, and prostaglandins of the E series have been defined and evidence for a glutamate receptor has been presented. Extrapolation of such pharmacological data to studies with whole animals should provide important information as to the physiological significance of specific cyclic AMP-generating systems to the function of the intact brain.  相似文献   

6.
7.
Corticosteroid receptors were demonstrated in the medial hypothalamus, the hippocampus and the parietal cortex of the rat while no such receptors were found in the hypophysis, the amygdala and the anterior hypothalamus. The findings suggest the role of extrahypothalamic regions in the perception of corticosteroid feedback as well as in the regulation of the hypothalamo-hypophysial-adrenal function and do not support the assumption that corticosteroids would inhibit corticotrophin secretion by acting directly on the hypophysis.  相似文献   

8.
The effects of agents known to affect the cyclic AMP (cAMP) system in nervous tissue have been studied on the rapid axonal transport in vitro of [3H]leucine-labeled proteins in the frog sciatic nerve. The transport was inhibited by 3 different cAMP analogues; dibutyryl cAMP (1 mM), zeatin (0.5 mM), and zeatin riboside (0.5 mM), whereas another N6-substituted adenine derivative, N6-, isopentyl-adenine (DMA) (0.5 mM), and also dibutyryl cyclic GMP (1 mM), lacked effects. Two inhibitors of cAMP phosphodiesterases, papaverine and RO 207222, increased the level of cAMP in the nerve and arrested the transport. Papaverine was very potent and caused a reversible transport block at 0.05 mM. Adenosine (3 mM) increased the cAMP content about 16 times, much more than any of the other drugs tested, but only inhibited the transport by about 50%. Veratridine, a depolarizing agent, irreversibly blocked the transport at a low concentration (0.01 mM), which did not change the cAMP level. Transport inhibitory effects by another depolarizing substance, ouabain, and tricyclic psychotropic agent, chlorpromazine, have been described earlier. Ouabain (0.1 mM), in contrast to chlorpromazine (0.1 mM), caused a small increase in the cAMP content. The present results do not suggest the existence of a close relationship between rapid axonal transport and the cAMP system. Transport inhibitory effects due to disturbed energy metabolism will be discussed.  相似文献   

9.
10.
1. Multiple distinct affinity states or sites of substance P (SP) receptors exist in freshly-prepared rat brain membranes. 2. Substance P receptors may couple with islet-activating protein (pertussis toxin) sensitive GTP-binding protein(s). 3. Substance P receptors may be regulated Mg2+ and Na+ in an opposite manner. 4. Some important factor(s), in addition to GTP-binding protein, appear to be involved in SP binding activity. 5. An apparent molecular weight of the SP binding site is approximately 46,000 Da.  相似文献   

11.
12.
Mating between gametes of the biflagellated unicellular green alga Chlamydomonas reinhardi consists of several events culminating in zygote formation. Initially, the cells agglutinate by their flagellar tips. This is followed by pairing, cell wall loss, and cell fusion. Here we report on the relationship between the length of the flagellum, and the cells' ability to agglutinate, undergo cell wall loss (as measured by medium carbohydrate accumulation), and to form zygotes. We found that deflagellated gametes regained the potential for sexual agglutination when the flagella had regenerated to less than 3 μm (compared to the full length flagella of approx. 11 μm), while medium carbohydrate appeared only after the flagella had reached an average length greater than 5 μm. By inhibiting flagellar regeneration with cycloheximide or colchicine, we determined that carbohydrate release is related to the length of the flagellum and not to the time after deflagellation. A flagellar length dependence similar to that of carbohydrate release was also observed when we measured the relationship between the gametes' ability to fuse and flagellar length.  相似文献   

13.
Conclusions Recent research has raised a whole set of new and interesting points concerning the arrangement of GABA receptor sites. The most important of these is the separation of two distinct GABA receptor categories, namely bicuculline-sensitive and bicuculline-insensitive, which control the chloride and calcium conductance of the postsynaptic membrane. Information regarding the membrane and intracellular processes involved in activating GABAB receptors remains particularly limited as yet. Accordingly, findings from the literature maintain that calcium ions are not the sole transmitter of transmembrane current during activation of this category of receptor, while data from biochemical research suggests that the intracellular activity of cAMP and cGMP is changed when bicuculline-insensitive receptors are activated [15, 38]. It should be added that the physiological role played by these receptors is not yet known.The study of bicuculline-sensitive GABA receptor complexes using benzodiazepines, as well as their antagonists and reversible agonists, also offers considerable interest. Such research is particularly apposite in view of the widely discussed possibility of related endogenous-type substances existing and consequently of hitherto unknown inherent mechanisms controlling inhibitory processes within the CNS.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 273–282, March–April, 1986.  相似文献   

14.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), two of the best-studied lysophospholipids, are known to influence diverse biological events, including organismal development as well as function and pathogenesis within multiple organ systems. These functional roles are due to a family of at least 11 G protein-coupled receptors (GPCRs), named LPA1–6 and S1P1–5, which are widely distributed throughout the body and that activate multiple effector pathways initiated by a range of heterotrimeric G proteins including Gi/o, G12/13, Gq and Gs, with actual activation dependent on receptor subtypes. In the central nervous system (CNS), a major locus for these signaling pathways, LPA and S1P have been shown to influence myriad responses in neurons and glial cell types through their cognate receptors. These receptor-mediated activities can contribute to disease pathogenesis and have therapeutic relevance to human CNS disorders as demonstrated for multiple sclerosis (MS) and possibly others that include congenital hydrocephalus, ischemic stroke, neurotrauma, neuropsychiatric disorders, developmental disorders, seizures, hearing loss, and Sandhoff disease, based upon the experimental literature. In particular, FTY720 (fingolimod, Gilenya, Novartis Pharma, AG) that becomes an analog of S1P upon phosphorylation, was approved by the FDA in 2010 as a first oral treatment for MS, validating this class of receptors as medicinal targets. This review will provide an overview and update on the biological functions of LPA and S1P signaling in the CNS, with a focus on results from studies using genetic null mutants for LPA and S1P receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

15.
16.
Valeev  A. E.  Chernevskaya  N. I. 《Neurophysiology》1988,20(2):196-204
A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 269–279, March–April, 1988.  相似文献   

17.
The cyclic GMP immunofluorescent fibres in the rat central nervous system have been characterized as processes of fibrous astrocytes, on the basis of distribution and similarity to the localization of glial fibrillary acidic protein. The neuroglial localization of the nucleotide is discussed together with the surprising observation that these cyclic GMP positive fibres are absent from the central nervous system of the adult mouse.  相似文献   

18.
19.
With the convergence of science from the fields of neurobiology and immunology, many exciting and challenging surprises have emerged regarding cytokines, neuroendocrine hormones, neuropeptides, excitatory amino acids, and their receptors. For some time neurobiologists have known that subsets of neural cells had different receptors for the same ligand. Those subsets of cells could be as different as neurons and astrocytes and as closely related as astrocytes from different lineages or anatomical areas. The neurobiological puzzle has been to determine the functional meaning of these differences. Immunologists in contrast have long understood the clear cut differences between T and B lymphocytes or T helper/inducer and T cytotoxic/suppressor cells and their response to cytokines. However, it is only very recently that they have discovered preferential use by these cells of different receptors for an identical cytokine ligand. Indeed, identical cytokines in the central nervous system and immune response may induce their pleiotropic responses by utilizing different receptors in these two systems. Immunologic paradigms may help neurobiologists predict the existence of subsets of neural cells and their function. Likewise, neurobiology may enable immunologists to predict roles for receptors in gene families as well as the existence of as yet unidentified receptors.  相似文献   

20.
Amine sulfate formation in the central nervous system   总被引:2,自引:0,他引:2  
The sulfates of norepinephrine, dopamine (DA), and serotonin (5-hydroxytryptamine [5HT]) are present in the cerebrospinal fluid (CSF) of laboratory animals and humans. The amounts of sulfated amines in human CSF always greatly exceed the amounts of the free amines. The enzyme responsible for sulfation, phenol sulfotransferase (PST) (EC 2.8.2.1), has been detected in the brain tissue of several species, including humans. PST in the human brain has a high affinity for the amines but it is a low-capacity enzyme. Accordingly, sulfation appears to be of greater significance in the economy of the amines under quiescent conditions than during conditions of increased release of transmitter. Recent evidence suggests that a fraction of the conjugated amines in CSF enters from plasma because in the African green monkey, DA sulfate and 5HT sulfate cross the blood-CSF barrier after i.v. injection. In addition, in humans there are no increases in the concentration of amine sulfates from lumbar to ventricular CSF that would also be compatible with a partly peripheral origin for the amine sulfates. However, it appears that at least a portion of the amine sulfates in CSF originate in the central nervous system because the ratios of [CSF amine sulfates]/[plasma sulfates] are never as high after i.v. injection as under basal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号