首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The budding yeast PLC1 gene encodes a homolog of the delta isoform of mammalian phosphoinositide-specific phospholipase C. Here, we present evidence that Plc1p associates with the kinetochore complex CBF3. This association is mediated through interactions with two established kinetochore proteins, Ndc10p and Cep3p. We show by chromatin immunoprecipitation experiments that Plc1p resides at centromeric loci in vivo. Deletion of PLC1, as well as plc1 mutations which abrogate the interaction of Plc1p with the CBF3 complex, results in a higher frequency of minichromosome loss, nocodazole sensitivity, and mitotic delay. Overexpression of Ndc10p suppresses the nocodazole sensitivity of plc1 mutants, implying that the association of Plc1p with CBF3 is important for optimal kinetochore function. Chromatin extracts from plc1Delta cells exhibit reduced microtubule binding to minichromosomes. These results suggest that Plc1p associates with kinetochores and regulates some aspect of kinetochore function and demonstrate an intranuclear function of phospholipase C in eukaryotic cells.  相似文献   

2.
Chromosome segregation during mitosis requires kinetochores, specialized organelles that mediate chromosome attachment to spindle microtubules. We have shown previously that in budding yeast, Plc1p (phosphoinositide-specific phospholipase C) localizes to centromeric loci, associates with the kinetochore proteins Ndc10p and Cep3p, and affects the function of kinetochores. Deletion of PLC1 results in nocodazole sensitivity, mitotic delay, and a higher frequency of chromosome loss. We report here that despite the nocodazole sensitivity of plc1Delta cells, Plc1p is not required for the spindle checkpoint. However, plc1Delta cells require a functional BUB1/BUB3-dependent spindle checkpoint for viability. PLC1 displays strong genetic interactions with genes encoding components of the inner kinetochore, including NDC10, SKP1, MIF2, CEP1, CEP3, and CTF13. Furthermore, plc1Delta cells display alterations in chromatin structure in the core centromere. Chromatin immunoprecipitation experiments indicate that Plc1p localizes to centromeric loci independently of microtubules, and accumulates at the centromeres during G(2)/M stage of cell cycle. These results are consistent with the view that Plc1p affects kinetochore function, possibly by modulating the structure of centromeric chromatin.  相似文献   

3.
4.
5.
6.
In Saccharomyces cerevisiae, many osmotically inducible genes are regulated by the Sko1p-Ssn6p-Tup1p complex. On osmotic shock, the MAP kinase Hog1p associates with this complex, phosphorylates Sko1p, and converts it into an activator that subsequently recruits Swi/Snf and SAGA complexes. We have found that phospholipase C (Plc1p encoded by PLC1) is required for derepression of Sko1p-Ssn6p-Tup1p-controlled osmoinducible genes upon osmotic shock. Although plc1Delta mutation affects the assembly of the preinitiation complex after osmotic shock, it does not affect the recruitment of Hog1p and Swi/Snf complex at these promoters. However, Plc1p facilitates osmotic shock-induced recruitment of the SAGA complex. Like plc1Delta cells, SAGA mutants are osmosensitive and display compromised expression of osmotically inducible genes. The reduced binding of SAGA to Sko1p-Ssn6p-Tup1p-repressed promoters in plc1Delta cells does not correlate with reduced histone acetylation. However, SAGA functions at these promoters to facilitate recruitment of the TATA-binding protein. The results thus provide evidence that Plc1p and inositol polyphosphates affect derepression of Sko1p-Ssn6p-Tup1p-controlled genes by a mechanism that involves recruitment of the SAGA complex and TATA-binding protein.  相似文献   

7.
A Saccharomyces cerevisiae mutant (zrt1Delta) lacking the ZRT1 gene, which encodes a high-affinity Zn(2+) transporter, scarcely thrived in a low-pH, low-phosphate medium because of Zn(2+) deficiency. Supplementation of the medium with Al(3+) restored growth to a level comparable to that of a wild-type strain. A metal determination study clearly demonstrated that Al(3+) induced the incorporation of Zn(2+) into zrt1Delta cells, probably through the low-affinity Zn(2+) transporter Zrt2p, given that the zrt1Deltazrt2Delta double mutant did not show Al-induced growth enhancement. Al(3+) may have altered the speciation of Zn(2+) in the medium, resulting in enhanced levels of free Zn(2+). Alternatively, it might be that Zrt2p was degraded by endocytosis in the absence of Al(3+) and Al(3+) interfered with this process, resulting in enhanced Zn(2+) accumulation.  相似文献   

8.
9.

Background

The ability to respond rapidly to fluctuations in environmental changes is decisive for cell survival. Under these conditions trehalose has an essential protective function and its concentration increases in response to enhanced expression of trehalose synthase genes, TPS1, TPS2, TPS3 and TSL1. Intriguingly, the NTH1 gene, which encodes neutral trehalase, is highly expressed at the same time. We have previously shown that trehalase remains in its inactive non-phosphorylated form by the action of an endogenous inhibitor. Recently, a comprehensive two-hybrid analysis revealed a 41-kDa protein encoded by the YLR270w ORF, which interacts with NTH1p.

Results

In this work we investigate the correlation of this Trehalase Associated Protein, in trehalase activity regulation. The neutral trehalase activity in the ylr270w mutant strain was about 4-fold higher than in the control strain. After in vitro activation by PKA the ylr270w mutant total trehalase activity increased 3-fold when compared to a control strain. The expression of the NTH1 gene promoter fused to the heterologous reporter lacZ gene was evaluated. The mutant strain lacking YLR270w exhibited a 2-fold increase in the NTH1-lacZ basal expression when compared to the wild type strain.

Conclusions

These results strongly indicate a central role for Ylr270p in inhibiting trehalase activity, as well as in the regulation of its expression preventing a wasteful futile cycle of synthesis-degradation of trehalose.
  相似文献   

10.
11.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

12.
Bloss T  Clemens S  Nies DH 《Planta》2002,214(5):783-791
The ZAT1p zinc transporter from Arabidopsis thaliana (L.) Heynh. is a member of the cation diffusion facilitator (CDF) protein family. When heterologously expressed in Escherichia coli, ZAT1p bound zinc in a metal blot. Binding of zinc occurred mainly to the hydrophilic amino acid region from H182 to H232. A ZAT1p/ZAT1p*Delta(M1-I25) protein mixture was purified and reconstituted into proteoliposomes. Uptake of zinc into the proteoliposomes did not require a proton gradient across the liposomal membrane. ZAT1p did not transport cobalt, and transported cadmium at only 1% of the zinc transport rate. ZAT1p functioned as an uptake system for 65Zn2+ in two strains of the Gram-negative bacterium Ralstonia metallidurans, which were different in their content of zinc-efflux systems. The ZAT1 gene did not rescue increased zinc sensitivity of a Delta ZRC1single-mutant strain or of a Delta ZRC1 Delta COT1 double-mutant strain of Saccharomyces cerevisiae, but ZAT1 complemented this phenotype in a Delta SpZRC1 mutant strain of Schizosaccharomyces pombe.  相似文献   

13.
14.
1,3-Propanediol (1,3-PD) can be used for the industrial synthesis of a variety of compounds, including polyesters, polyethers, and polyurethanes. 1,3-PD is generated from petrochemical and microbial sources. 1,3-Propanediol is a typical product of glycerol fermentation, while acetate, lactate, 2,3-butanediol, and ethanol also accumulate during the process. Substrate and product inhibition limit the final concentration of 1,3-propanediol in the fermentation broth. It is impossible to increase the yield of 1,3-propanediol by using the traditional whole-cell fermentation process. In this study, dhaD and dhaK, the genes for glycerol dehydrogenase and dihydroxyacetone kinase, respectively, were inactivated by homologous recombination in Klebsiella pneumoniae. The dhaD/dhaK double mutant (designated TC100), selected from 5,000 single or double cross homologous recombination mutants, was confirmed as a double cross by using polymerase chain reaction. Analysis of the cell-free supernatant with high-performance liquid chromatography revealed elimination of lactate and 2,3-butanediol, as well as ethanol accumulation in TC100, compared with the wild-type strain. Furthermore, 1,3-propanediol productivity was increased in the TC100 strain expressing glycerol dehydratase and 1,3-PDO dehydrogenase regulated by the arabinose PBAD promoter. The genetic engineering and medium formulation approaches used here should aid in the separation of 1,3-propanediol from lactate, 2,3-butanediol, and ethanol and lead to increased production of 1,3-propanediol in Klebsiella pneumoniae.  相似文献   

15.
High-fidelity chromosome segregation during mitosis requires kinetochores, protein complexes that assemble on centromeric DNA and mediate chromosome attachment to spindle microtubules. In budding yeast, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) is important for function of kinetochores. Deletion of PLC1 results in alterations in chromatin structure of centromeres, reduced binding of microtubules to minichromosomes, and a higher frequency of chromosome loss. The mechanism of Plc1p’s involvement in kinetochore activity was not initially obvious; however, a testable hypothesis emerged with the discovery of the role of inositol polyphosphates (InsPs), produced by a Plc1p-dependent pathway, in the regulation of chromatin-remodeling complexes. In addition, the remodels structure of chromatin (RSC) chromatin-remodeling complex was found to associate with kinetochores and to affect centromeric chromatin structure. We report here that Plc1p and InsPs are required for recruitment of the RSC complex to kinetochores, which is important for establishing proper chromatin structure of centromeres and centromere proximal regions. Mutations in PLC1 and components of the RSC complex exhibit strong genetic interactions and display synthetic growth defect, altered nuclear morphology, and higher frequency of minichromosome loss. The results thus provide a mechanistic explanation for the previously elusive role of Plc1p and InsPs in kinetochore function. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Bleomycin is an antitumor drug that damages DNA via a free radical-dependent mechanism, and yeast mutants defective in DNA repair are hypersensitive to the drug. To identify possible pathways that may contribute to bleomycin resistance in yeast, we characterized a panel of bleomycin-sensitive mutants that were previously isolated by insertion mutagenesis using the transposon miniTn3::Leu2::LacZ::AMP( R). One of these mutants harbored a single insertion in the SLG1 gene, which encodes a cell membrane protein that senses cell wall stress, and functions to maintain cell wall function by activating the protein kinase C signaling pathway. Deletion of the SLG1 gene in parental strains caused hypersensitivity to bleomycin, and this correlated with an accumulation of damaged DNA. A plasmid that expresses the native SLG1 gene or that increases PKC1 gene dosage restored bleomycin resistance to the slg1Delta mutant. Two-dimensional gel electrophoresis revealed that exposure to bleomycin triggered the expression of certain proteins, presumably to maintain cell wall function, in a Slg1-dependent manner. In addition, mutants lacking cell wall function were found to be hypersensitive to bleomycin. We conclude that mutants deficient in proteins that maintain cell wall function are severely compromised in their ability to limit bleomycin entry into the cell. Therefore, these mutants are burdened with increased genotoxicity upon exposure to bleomycin in the medium. Our results show that major mechanisms other than DNA repair are operating in yeast to mediate bleomycin resistance.  相似文献   

17.
18.
19.
Yang F  Ma D  Wan Z  Liu W  Ji Y  Li R 《Mycopathologia》2011,172(5):347-355
Aspergillus fumigatus is an opportunistic pathogen that may cause severe invasive disease in immunocompromised patients. The filamentous fungi undergo polarized growth, searching for nutrients in the environment and causing invasive growth in tissue. Sho1 is a sensor of the high osmolarity glycerol pathway, and the sho1 mutant showed a decrease in growth rate. We found that sho1 is involved in the polarized growth of A. fumigatus. The sho1 mutation resulted in extended isotropic growth of germinating conidia followed by multiple germ tubes and wide hyphae with short intercalary cells by calcofluor white staining. The mechanism by which sho1 gene affected polarized growth is investigated. A reduced number of apical vesicles with greater dispersion were observed by transmission electron microscopy in the Spitzenkörper body of the sho1 mutant. Actin patches were distributed randomly at low density at early stages of mutant strain fungal development and reaggregated to the hyphal tip of later stages when long filamentous fungi formed. Actin patches located at the tip of polarized wild-type cells. RNA levels of polarized growth-related genes Rho GTPases were detected by real-time PCR. The sho1 gene did not affect the RNA expression when strains were cultured at 37°C for 6 h. At 17 h, the RNA expression of rho1, rho3 and CDC42 in the sho1 mutant were 0.18-, 0.18- and 0.33-fold of that in the wild type. The sho1 gene affected the polarized growth through affecting the expression of Rho GTPases, the distribution of actin cytoskeleton, vesicle quantity and distribution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号