首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic basis of plasmid host range has been investigated by Tn7 insertion mutagenesis of the promiscuous plasmid R18 in Pseudomonas aeruginosa. Six mutants have been isolated on the basis of greatly reduced transferability into Escherichia coli C while retaining normal transferability within P. aeruginosa. Their physical mapping shows that two of them map at coordinate 11.72 ± 0.14 kb, in the region of the origin of plasmid replication (oriV) and one at 18.0 ± 0.3 kb, in the trans-acting gene essential for initiation of replication at oriV (trfA). Three map at 48.4 ± 0.5 kb in the region of the origin of plasmid transfer (oriT) and the site at which a single-strand nick is introduced in the plasmid DNA-protein relaxation complex (rlx). Consistent with the postulated defective replication of the oriV and trfA mutants was their inability to transform E. coli C or K12 while being able to transform P. aeruginosa. As expected the oriT/rlx mutants transformed both hosts as effectively as R18. Furthermore the trfA mutant was readily curable by mitomycin C in a DNA polymerase I-proficient P. aeruginosa and spontaneously lost from a polymerase-deficient mutant of P. aeruginosa suggesting a role of this polymerase in the replication of R18. Extensive transfer tests from P. aeruginosa into a range of enteric bacteria, other Pseudomonas species and into other Gram-negative bacteria indicated a complex host range pattern for these mutants. It appears that both plasmid replication and conjugation genes are responsible for host range in addition to the involvement of host gene products.  相似文献   

2.
Summary The broad host range plasmid, RK2, has been isolated as a DNA-protein relaxation complex. Nicking of the plasmid DNA in the relaxation complex occurs at a single specific site (rlx) located approximately 20 kb away from the origin of DNA replication. A cis-acting function required for plasmid transfer, the presumptive origin of transfer, maps in the same region as rlx. The region of RK2 encompassing rlx has been cloned onto pBR322 and shown to promote mobilization of the hybrid plasmid by an RK2 derivative. These results indicate that the RK2 relaxation complex nicks at or near the origin of transfer of the RK2 plasmid.  相似文献   

3.
Centrifugation through a cesium chloride density gradient and agarose gel electrophoresis of the DNA from the purple non-sulfur photosynthetic bacterium Ectothiorhodospira sp. resolved a single extrachromosomal element, plasmid pDG1. Its size was estimated to be 13.2 kilobases by restriction endonuclease mapping. Plasmid pDG1 and two restriction fragments thereof were cloned in Escherichia coli C600 with plasmid pBR327 as a vector to form mixed plasmids pDGBR1, pDGBR2, and pDGBR3. The resistance to streptomycin and mercury found in Ectothiorhodospira sp. was transferred to E. coli C600 after transformation with pDGBR1 but not with pDGBR2 and pDGBR3. The replication origin of pDG1 was estimated to be within a 2-kilobase restriction fragment of pDG1 by monitoring its replication in E. coli HB101, using a kanamycin resistance reporter gene. High stringency molecular hybridization with 32P-labeled pDG1 identified specific fragments of genomic DNA, suggesting the integration of some plasmid sequences. In accordance with the hypothesis that this integration is due to a transposon, we tested the transfer of streptomycin resistance from pDG1 into plasmid pVK 100 used as a target. For this test, we regrouped in the same cells of E. coli HB101, pDGBR1 and mobilizable plasmid pVK100 (tetr, kmr). We used the conjugation capacity of the pVK100/pRK2013 system to rescue the target plasmid pVK100 into nalidixic acid-resistant E. coli DH1. The transfer frequency of streptomycin resistance into pVK100 was 10−5, compatible with a transposition event. In line with the existence of a transposon on pDG1, heteroduplex mapping indicated the presence of inverted repeats approximately 7.5 kb from one another.  相似文献   

4.
The broad host range plasmid RK2 has previously been found to contain three separate regions of the genome involved in replication and maintenance in Escherichia coli (C. M. Thomas, R. Meyer, D. R. Helinski, 1980, J. Bacteriol.141, 213–222). They include the origin of replication (oriRK2) and the trfA region which encodes a trans-acting function required for replication. The third region (trfB), although not essential for replication, supplies a function involved in the maintenance of plasmid RK2. Using the maxicell system of labeling plasmid-specific proteins, we have identified all of the proteins encoded by two miniplasmid derivatives of RK2 which contain only the regions oriRK2, trfA, and trfB. To determine which region specifies each protein, RK2/mini-ColE1 hybrid plasmids were used which contain various restriction fragments of the mini-RK2 replicon. The trfA region appears to encode three proteins designated A1 (39,000 MW), A2 (31,000 MW), and A3 (14,000 MW). Analysis of proteins synthesized by plasmids containing deleted forms of the trfA region indicates that the A2 protein is the essential trfA-encoded replication protein of plasmid RK2. The proteins A1 and A3 may be the products specified by the genes tra3 (involved in transmissibility) and kilB1 (involved in host-cell viability) which also map in the trfA region. The trfB region specifies two proteins designated B1 (36,000 MW) and B2 (30,000 MW). These may be the products of the two kil-override (kor) genes located in the trfB region which have been implicated in plasmid maintenance.  相似文献   

5.
Hybrid plasmids were constructed in vitro by linking the Inc P-1 broad host range plasmid RK2 to the colicinogenic plasmid ColE1 at their EcoRI endonuclease cleavage sites. These plasmids were found to be immune to colicin E1, non-colicin-producing, and to exhibit all the characteristics of RK2 including self-transmissibility. These joint replicons have a copy number of 5 to 7 per chromosome which is typical of RK2, but not ColE1. Unlike ColE1, the plasmids will not replicate in the presence of chloramphenicol and are maintained in DNA polymerase I mutants of Escherichia coli. In addition, only RK2 incompatibility is expressed, although functional ColE1 can be rescued from the hybrids by EcoRI cleavage. This suppression of ColE1 copy number and incompatibility was found to be a unique effect of plasmid size on ColE1 properties. However, the inhibition of ColE1 or ColE1-like plasmid replication in chloramphenicol-treated cells is a specific effect of RK2 or segments of RK2 (Cri+ phenotype). This phenomenon is not a function of plasmid size and requires covalent linkage of RK2 DNA to ColE1. A specific region of RK2 (50.4 to 56.4 × 103 base-pairs) cloned in the ColE1-like plasmid pBR313 was shown to carry the genetic determinant(s) for expression of the Cri+ phenotype.  相似文献   

6.
Summary The promiscuous IncQ plasmid pKT210 (Cmr, Smr) is efficiently transferred by transpecific conjugation from Escherichia coli to the facultatively heterotrophic cyanobacterium Synechocystis PCC6803 when mobilized by a helper plasmid coding for IncP transfer functions. The IncQ plasmid is stably maintained in the cyanobacterium as an autonomously replicating multicopy plasmid with no detectable structural alterations and can be recovered by transformation back to E. coli when using a mcrA mcrB host. Thus, the replicative host-range of IncQ plasmids extends beyond purple bacteria to the distinct procaryotic taxon of cyanobacteria, allowing the use of these small plasmids as convenient cloning vectors in Synechocystis PCC6803 and presumably also in cyanobacteria that are not amenable to genetic transformation. In contrast, an IncQ plasmid bearing the TRP1 gene of Saccharomyces cerevisiae failed to replicate when transferred to that yeast by transformation.  相似文献   

7.
A mutant F′ plasmid has been isolated in a strain of Salmonella typhimurium harboring Fts114lac. This mutant, designated FlacS, exhibits unique genetic stability in strains of S. typhimurium and Escherichia coli. It shows no thermolability and is lost at frequencies of 20 to 100 times less than the wild-type F′lac (F42) in the same genetic backgrounds. The FlacS is also insensitive to conventional plasmid curing agents, whereas both Fts114lac and F42 are readily cured. The nature of the mutation(s) conferring stability to the FlacS is unclear, but plasmid linkage has been established. The high frequency of conjugal transfer of the FlacS and its behavior in recombination-deficient strains of S. typhimurium and E. coli argue against its stability being due to stable chromosomal integration. The FlacS is also capable of transferring chromosomal markers in S. typhimurium and E. coli mating systems. No major differences in chromosomal mobilization have been observed among F42, Fts114lac, and FlacS donors of either genus.  相似文献   

8.
A plasmid, pGB112, has recently been developed to transfer DNA from Escherichia coli to Streptomyces spp via conjugation. This technique made use of (A) E. coli replicon, (B) ampicillin (amp) resistance gene for selection in E. coli and thiostrepton (tsr) resistance gene for selection in Streptomyces, (C) a fragment of SCP2* replicon, (D) a 2.6 kb fragment of tra-cassette which consists of pIJ101 transfer gene (tra) and two ermE promoters, (E) a 0.8 kb fragment of oriT of (IncP) RK2. The results showed that this plasmid was able to transfer plasmid DNA from E. coli to Streptomyces coelicolor via conjugation, and that it could also transfer DNA between Streptomyces strains. Since this plasmid has both pBR322 and SCP2* replicons, it may provide a novel and useful method for genetic operation in E. coli and Streptomyces.An erratum to this article can be found at  相似文献   

9.
Two spontaneous deletions of a derivative of the broad-host-range plasmid RK2 were isolated from Agrobacterium tumefaciens. The two deletions have lost 56 and 505 bp, respectively, near the origin of replication (oriV). Of the eight 17-bp repeats present in the RK2 oriV, the smaller deletion has lost the first two while the larger one has lost the first three. The deletions led to a significant increase (3- to 7-fold) in plasmid copy number in A. tumefaciens, indicating their importance in copy number control. While the smaller deletion could replicate in Escherichia coli, the larger one could not. The role of the oriV sequences in the replication of pRK2 in A. tumefaciens and in E. coli is discussed.  相似文献   

10.
The par region of the stably maintained broad-host-range plasmid RK2 is organized as two divergent operons, parCBA and parDE, and a cis-acting site. parDE encodes a postsegregational killing system, and parCBA encodes a resolvase (ParA), a nuclease (ParB), and a protein of unknown function (ParC). The present study was undertaken to further delineate the role of the parCBA region in the stable maintenance of RK2 by first introducing precise deletions in the three genes and then assessing the abilities of the different constructs to stabilize RK2 in three strains of Escherichia coli and two strains of Pseudomonas aeruginosa. The intact parCBA operon was effective in stabilizing a conjugation-defective RK2 derivative in E. coli MC1061K and RR1 but was relatively ineffective in E. coli MV10Δlac. In the two strains in which the parCBA operon was effective, deletions in parB, parC, or both parB and parC caused an approximately twofold reduction in the stabilizing ability of the operon, while a deletion in the parA gene resulted in a much greater loss of parCBA activity. For P. aeruginosa PAO1161Rifr, the parCBA operon provided little if any plasmid stability, but for P. aeruginosa PAC452Rifr, the RK2 plasmid was stabilized to a substantial extent by parCBA. With this latter strain, parA and res alone were sufficient for stabilization. The cer resolvase system of plasmid ColE1 and the loxP/Cre system of plasmid P1 were tested in comparison with the parCBA operon. We found that, not unlike what was previously observed with MC1061K, cer failed to stabilize the RK2 plasmid with par deletions in strain MV10Δlac, but this multimer resolution system was effective in stabilizing the plasmid in strain RR1. The loxP/Cre system, on the other hand, was very effective in stabilizing the plasmid in all three E. coli strains. These observations indicate that the parA gene, along with its res site, exhibits a significant level of plasmid stabilization in the absence of the parC and parB genes but that in at least one E. coli strain, all three genes are required for maximum stabilization. It cannot be determined from these results whether or not the stabilization effects seen with parCBA or the cer and loxP/Cre systems are strictly due to a reduction in the level of RK2 dimers and an increase in the number of plasmid monomer units or if these systems play a role in a more complex process of plasmid stabilization that requires as an essential step the resolution of plasmid dimers.  相似文献   

11.
A new broad host-range plasmid capable of conjugative transfer has been isolated and characterized. The plasmid has the high frequency of conjugation transfer, is capable of conjugative transfer mobilization of nonconjugative plasmids, carries no known phenotypic markers. The plasmid demonstrates the specific interaction with the plasmids of P incompatibility group. The comparatively small size of the plasmid permits one to use it efficiently for comparative study of organization of the broad host range plasmids.  相似文献   

12.
13.
Plasmid deoxyribonucleic acid (DNA) replication was studied in Escherichia coli hosts carrying temperature-sensitive (ts) initiation mutations. The replication of the R plasmid NR1 continues at the nonpermissive temperature in a ts dnaA mutant host but at a decreasing rate in proportion to the residual chromosome synthesis. The replication of NR1, as well as of the F plasmid F′lac, ceases immediately at the nonpermissive temperature in a ts dnaC mutant host. The ability to reinitiate R plasmid replication in the absence of protein or ribonucleic acid synthesis is accumulated at the nonpermissive temperature in a dnaC mutant host.  相似文献   

14.
A method of transductional complementation was developed in Pseudomonas aeruginosa to identify the cistrons involved in the conjugal transfer of the wide host range R plasmid R18. This used the P. aeruginosa bacteriophage E79tv-2 and has led to the identification of eight tra cistrons encoded by this plasmid. Plasmids mutant in six cistrons, traA, traB, traC, traD, traE, and traG were resistant to donor-specific phage (Dps?) while traF and traH mutant plasmids retained phage sensitivity. Some traB mutants were unable to inhibit the replication of phage G101 (Phi(G101)?) while some were also deficient in entry exclusion (Eex?). Two traB mutants which were also Eex? were suppressible by an amber suppressor. Three tra mutants selected directly as being Phi(G101)? were found to be also Dps?Eex? and mutant in traB. These data suggest a relationship between traB, Eex, and Phi(G101). In order to facilitate future genetic comparison of the tra genes of R18 and other wide host range plasmids and the role of the host in conjugation, R18 DNA was compared with that of RP4, by restriction enzyme fragment patterns and found to be identical.  相似文献   

15.
D D Womble  R H Rownd 《Plasmid》1979,2(1):79-94
The effects of inhibition of protein and ribonucleic acid (RNA) synthesis on the replication of the plasmids NR1 and F′lac in Escherichia coli were studied. When protein synthesis is inhibited, there is approximately a 25% increase in R plasmid deoxyribonucleic acid (DNA), but this newly synthesized DNA is not recoverable in the covalently closed circular (CCC) form until protein synthesis is allowed to resume. When RNA synthesis is inhibited, there is also approximately a 20% increase in R plasmid DNA, but this DNA is immediately recoverable in the CCC form. F′lac DNA, unlike R plasmid DNA, can continue to replicate for at least a generation time in the absence of protein synthesis, and this F′lac DNA is immediately recoverable in the CCC form.  相似文献   

16.
Molecular characterization of a stable Flac plasmid   总被引:2,自引:0,他引:2  
FlacS is a thermostable extrachromosomal element isolated in Salmonella typhimurium which is altered in its replication as compared to its precursor Fts114lac. Sedimentation of both these plasmids in alkaline sucrose gradients has indicated a difference in their sizes. Contour length measurements of open circular plasmid DNA molecules photographed in the electron microscope have revealed the estimated molecular weight of Fts114lac to be 81 × 106 daltons while that of FlacS is 109 × 106 daltons. FlacS may carry a segment of S. typhimurium chromosomal or cryptic plasmid DNA.  相似文献   

17.
A terminal stage in the duplication of many bacterial plasmids involves the transient formation of catenated molecules containing two interlocked monomeric plasmid units. This property of plasmid replication was exploited to examine the relationship between F replication and the division cycle of Escherichia coli B/r cells growing in undisturbed, exponential-phase cultures. Various cultures of F′lac- or FKmr-containing cells were briefly exposed to [3H]thymidine, and then the transfer of radioactivity into, and out of, a catenated dimer consisting of two closed circular monomers was measured during a chase period. The fraction of plasmid molecules present in this dimer form was determined by separating cellular DNA in alkaline sucrose gradients. In addition, plasmid replication was studied in synchronously growing cultures by measuring both [3H]thymidine incorporation into covalently closed circular DNA and β-galactosidase inducibility. The results suggest that replication of F plasmids can take place throughout the cell division cycle, with the probability of replication increasing toward the end of the cycle. The presence of DNA homologous to the chromosome on the F′lac did not alter the replication pattern of the plasmid during the division cycle.  相似文献   

18.
19.
20.
TrfA is the only plasmid-encoded protein required for initiation of replication of the broad-host-range plasmid RK2. Here we describe the isolation of four trfA mutants temperature sensitive for replication in Pseudomonas aeruginosa. One of the mutations led to substitution of arginine 247 with cysteine. This mutant has been previously described to be temperature sensitive for replication, but poorly functional, in Escherichia coli. The remaining three mutants were identical, and each of them carried two mutations, one leading to substitution of arginine 163 with cysteine (mutation 163C) and the other a codon-neutral mutation changing the codon for glycine 235 from GGC to GGU (mutation 235). Neither of the two mutations caused a temperature-sensitive phenotype alone in P. aeruginosa, and the effect of the neutral mutation was caused by its ability to strongly reduce the trfA expression level. The double mutant and mutant 163C could not be stably maintained in E. coli, but mutant 235 could be established and, surprisingly, displayed a temperature-sensitive phenotype in this host. Mutation 235 strongly reduced the trfA expression level also in E. coli. The glycine 85 codon in trfA mRNA is GGU, and a change of this to GGC did not significantly affect expression. In addition, we found that wild-type trfA was expressed at much lower levels in E. coli than in P. aeruginosa, indicating that this level is a key parameter in the determination of the temperature-sensitive phenotypes in different species. The E. coli lacZ gene was translationally fused at the 3′ end and internally in trfA, in both cases leading to elimination of the effect of mutation 235 on expression. We therefore propose that this mutation acts through an effect on mRNA structure or stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号