首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The contribution of different membrane constituents to the bloodgroup P1 activity of human erythrocytes was investigated. Pronase digestion of native red cell stroma or partition between butanol and water had no serologically detectable effect, whereas pronase-treatment of previously butanol-extracted membranes liberated virtually all blood-group P1 determinants from the ghosts. On Laemmli gels, all P1 activity was found in the band 4.5 region. Thus it is concluded that, in addition to the well-documented P1 glycolipid, also membrane glycoproteins are carriers of blood-group P1 determinants.  相似文献   

3.
1. The enzymic removal of sialic acid residues from the glycoproteins of the human erythrocyte decreases the solubilization of membrane glycoprotein by Triton X-100. 2. The solubilization of asialoglycoprotein by Triton X-100 may be restored by the addition of borate. 3. Use of this non-ionic detergent in the presence of borate, as a general procedure for the mild solubilization of membrane glycoproteins deficient in sialic acid residues, is discussed.  相似文献   

4.
The oligosaccharide structures specifying the blood-group ABH determinants occur in the human erythrocyte membrane in different classes of compounds. The majority occur in a novel class of complex carbohydrate chains called the polyglycosyl chains. They are bound by an alkali-stable bond to glycoproteins (band 3, band 4.5) and occur also in glycolipids. Conventional glycosphingolipids as well as alkalilabile carboyhydrate chains of glycoproteins (in the PAS-bands) are also carriers of the blood-group determinants.  相似文献   

5.
Band 3 tyrosine kinase. Association with the human erythrocyte membrane   总被引:1,自引:0,他引:1  
Band 3, the anion transport protein of the human erythrocyte membrane, is known to be phosphorylated in ghosts at tyrosine 8. The band 3 tyrosine kinase is now shown to be associated with the Triton X-100 insoluble membrane skeleton but not with spectrin or actin. The kinase was reversibly dissociated from membranes and skeletons at elevated ionic strength (50% at mu = 0.15). The binding capacity of the membranes exceeded their native complement of the kinase by at least 60-fold. Prior removal of all peripheral proteins from the cytoplasmic surface of inside-out vesicles did not diminish the rebinding of the kinase, whereas prior removal of band 3 and other accessory proteins from skeletons abolished the rebinding of the kinase. An excess of glyceraldehyde-3-P dehydrogenase, which binds to band 3 in the region of the phosphate acceptor tyrosine 8, both inhibited the phosphorylation of band 3 and released the kinase into solution. Soluble 40/45-kDa chymotryptic fragments from the cytoplasmic pole of band 3 were phosphorylated at least as well as membranous band 3 and caused the release of the kinase from Triton-extracted skeletons. Membrane skeletons lacked most of the membrane band 3, but retained most of the kinase. Nevertheless, the band 3 population solubilized by Triton X-100 from prelabeled ghosts was as well phosphorylated as the population of band 3 retained by the skeletons. Furthermore, the fraction of band 3 not associated with the skeletons following Triton X-100 extraction was a good substrate for the solubilized kinase. We conclude that this tyrosine kinase is reversibly bound to the membrane through electrostatic interactions with the polyacidic sequence surrounding the phosphate accepting tyrosine 8 on band 3. The kinase appears to be preferentially linked to those band 3 molecules associated with the membrane skeleton, but it impartially phosphorylates band 3 species free in the bilayer as well as band 3 fragments in solution. The resemblance of its plasma membrane binding behavior to that of tyrosine kinases of certain viruses causing oncogenic transformation is discussed.  相似文献   

6.
7.
A two-dimensional polyacrylamide gel electrophoresis technique has been developed, improving the analytical separation of some proteins and glycoproteins of the human erythrocyte membrane. Freshly prepared membranes are totally solubilized, subjected to dodecylsulfate--polyacrylamide gel electrophoresis in the first dimension, followed by electrophoresis in the second dimension, using a detergent-free polyacrylamide gradient gel. By this method the proteins of the human erythrocyte membrane could be resolved into a two-dimensional pattern, which has been shown to be highly reproducible with respect to various blood-groups and within one blood-group from specimen to specimen. The method enables especially the investigation of the hydrophobic and very likely integrated membrane proteins and glycoproteins. Thus, band III[Fairbanks, G., Steck, Th. & Wallach, D. F. H., Biochemistry, 10, 2606--2617 (1971)] could be shown to consist of five proteins, one of them being the major glycoprotein of the human erythrocyte membrand. The two spectrin bands differed considerably in their two-dimensional patterns. The value of the given method for the investigation of membrane defects, which may be linked with various diseases of human erythrocytes, could be demonstrated in the case of two patients suffering from congenital dyserythropoetic anaemia.  相似文献   

8.
9.
Erythrocyte membranes from several species were prepared by three different methods of hypotonic hemolysis and examined for variations in protein and glycoprotein content by acrylamide gel electrophoresis in sodium dodecyl sulfate. Significant variations were noted in morphology of the membranes prepared by the different methods without attendant variations in protein patterns of the major membrane proteins for most cases observed, which show a similar pattern of nine common bands for all of the species observed. The significant difference in protein pattern which was noted was attributed to proteolytic digestion of membranes which were fragmented during preparation. Failure to remove white blood cells from membrane preparations was shown to be a significant source of the problem with proteolytic digestion. Glycoproteins were analyzed by acrylamide gel electrophoresis or by column chromatography. Each species appears to have a different major glycoprotein (or group of closely related glycoproteins). Molecular weights of glycoproteins calculated from acrylamide gel electrophoresis were found to vary with the percentage of acrylamide in the gel, indicating that these proteins do not behave in a normal fashion in this electrophoresis system. The molecular weight calculated from gel filtration data for the human membrane glycoproteins (26,000) was quite disparate from those calculated from gel electrophoresis (88,000 to 62,000 in 5 to 10% gels).  相似文献   

10.
11.
The M-, N-, and MN-glycoproteins obtained from human erythrocytes by phenol-water extraction were purified by gel filtration and digested with Pronase and trypsin. The products of degradation were fractionated by gel filtration on Sephadex G-25 and DEAE-Sephadex A-50 and the fractions were examined by poly(acrylamide)-gel electrophoresis in the presence of dodecyl sodium sulfate, analyzed for carbohydrate and amino acid contents, and tested for M and N blood-group activity. From the results, it is suggested that the glycoprotein chains are composed of a hydrophobic moiety devoid of carbohydrate chains and a hydrophilic moiety containing carbohydrate chains of different compositions, irregularly distributed along the protein chains and linked to L-asparagine, L-serine, or L-threonine residues. The M and N activity typical for the undegraded glycoproteins, and the “basic” or “precursor-type” N activity, were found in different glycopeptide fractions.  相似文献   

12.
Abstract Haemagglutination of enterotoxigenic Escherichia coli (ETEC) possessing F41 fimbriae was found to be inhibited by N -acetylgalactosamine. Other monosaccharides, such as N -acetylglucosamine, galactose and fucose were also inhibitors, although less effective than N -acetylgalactosamine. Purified F41 fimbriae bound to glycoproteins of human erythrocytes and glycophorin was found to act as an erythrocyte receptor for F41.  相似文献   

13.
Membranes from erythrocytes with a new Gerbich (Ge)-negative phenotype (Leach phenotype), as well as those from two other Ge-negative phenotypes, were examined. Whereas cells of the Leach phenotype apparently lack three minor sialoglycoproteins (beta, beta 1 and gamma), the membranes of Ge- Yus- and Ge- Yus+ erythrocytes apparently lack beta- and gamma-sialoglycoproteins but contain additional diffusely migrating components of apparent Mr 30 500-34 500 and 32 500-36 500 respectively. Immunoprecipitation experiments showed that the abnormal components of both Ge- Yus- and Ge- Yus+ erythrocytes reacted with two monoclonal antibodies, BRIC 4 and BRIC 10. These antibodies have been shown to react with sialoglycoproteins beta and beta 1 in normal erythrocytes. Cytoskeletal preparations from Ge- Yus- and Ge- Yus+ erythrocyte membranes contained the abnormal components. In contrast with cells of the Leach phenotype, which are elliptocytic, Ge- Yus- and Ge- Yus+ were of normal shape, despite their apparent lack of beta- and gamma-sialoglycoproteins. It seems likely that the abnormal components in these cells contribute to their normal shape. Ovalocytic erythrocytes were shown to incorporate more radioactivity in the sialoglycoprotein-beta 1 region than normal erythrocytes after labelling by the periodate/NaB3H4 technique. It is suggested that abnormal components in Ge- Yus- and Ge- Yus+ erythrocytes result from chromosomal misalignment with unequal crossing-over at meiosis between the genes giving rise to beta-, beta 1- and gamma-sialoglycoproteins.  相似文献   

14.
Intact human erythrocytes were exposed to low concentrations of glutaraldehyde. After washing and subsequent lysis of the cells, glyceraldehyde 3-phosphate dehydrogenase activity is found to be associated with a membrane fraction and cannot be eluted by salt treatment. Lactate dehydrogenase activity is associated with a supernatant fraction under the same conditions. Preincubation of the intact cells under conditions designed to increase internal NADH concentrations, leads to a lower membrane-associated activity of glyceraldehyde 3-phosphate dehydrogenase after lysis.  相似文献   

15.
When the membrane components of Xg(a+) erythrocytes were separated by electrophoresis and immunoblotted with an anti-Xga of human origin, two diffuse bands of approximate Mr 22,000-25,000 and 26,500-29,000 were stained. These reactive components were not evident in membranes from proteinase-treated Xg(a+) erythrocytes. Neuraminidase treatment of erythrocytes before immunoblotting resulted in one diffuse Xga-reactive band, the leading edge of which had a slightly increased mobility corresponding to a decrease in Mr of approx. 1500. These results suggest that the membrane components that carry Xga are sialoglycoproteins. A genetic relationship exists between Xga and the antigen recognized by the monoclonal antibody 12E7. An immunochemical comparison of the structures that carry the Xga and 12E7 antigens demonstrated that they differ in Mr and in the way in which they are modified by neuraminidase. This is in accord with evidence that Xga and 12E7 are the products of two separate structural loci.  相似文献   

16.
17.
SDS-acrylamide gel electrophoresis reveals the presence of a major glycoprotein in human, ox, horse, swine, and sheep erythrocyte membranes. Their apparent molecular weights differ among the various species. The major glycoproteins and additional minor glycoproteins can be recovered in the aqueous phase after extraction of the membranes with a mixture of CHCl3-CH3OH at room temperature. The extracted glycoproteins remain in the supernatant after centrifugation at 100,000 g for 60 min. in Tris-EDTA buffer. These glycoprotein preparations possess high activities for the phaseolus vulgaris phytohemagglutinin receptor, the infectious mononucleosis heterophile antigen, and the myxovirus receptor. Their specific activities and yields differ markedly from species to species.  相似文献   

18.
Glycoproteins of the human erythrocyte membrane were labeled with tritiated sodium borohydride after oxidation of terminal galactosyl and N-acetylgalactosaminyl residues with galactose oxidase. After separation of the polypeptides on polyacrylamide slab gels, a scintillator was introduced into the gel, and the radioactive proteins were visualed by autoradiography (fluorography). The following results were obtained. (a) The erythrocyte membrane contains at least 20 glycoproteins, many of which are minor components. (b) The carbohydrate of all the labeled glycoproteins is exposed only to the outside, since no additional glycoproteins can be labeled in isolated unsealed ghosts. (c) The membrane contains two major groups of glycoproteins. The first group of proteins contains sialic acids linked to the penultimate galactosyl/N-acetylgalactosaminyl residues, which are efficiently labeled only after pretreatment with neuraminidase. The second group has terminal galactosyl/N-acetylgalactosaminyl residues which can be easily labeled without neuraminidase treatment. The glycoproteins from fetal erythrocytes all belong to the first group, whereas only five glycoproteins of erythrocytes from adults belong. (d) Trypsin cleaves the proteins containing sialic acids, and fragments containing carbohydrate remain tightly bound and exposed in the membrane. (e) Pronase cleaves Band 3 in addition to the sialic acid containing glycoproteins, but most of the glycoproteins still remain unmodified in the membrane. (f) No difference is seen between membrane glycoproteins from cells of different ABH blood groups.  相似文献   

19.
Band 3, the human erythrocyte anion exchanger (AE1), and the glucose transporter (GLUT1) proteins each contain a single site of N-glycosylation that is heterogeneously glycosylated. Lectin binding and enzymatic deglycosylation assays showed that the polylactosaminyl oligosaccharide structure of these glycoproteins was altered to a high mannose or hybrid glycan form in three patients with hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS). Offspring from one of the HEMPAS patients had intermediate levels of polylactosaminyl oligosaccharide associated with AE1 and GLUT1, suggesting they may have been heterozygous for the genetic defect. The array of polylactosaminyl-containing glycoproteins present in EBV-transformed lymphoblasts derived from fresh blood of HEMPAS patients was similar to control lymphoblasts. HEMPAS lymphoblasts do not therefore express the defect in polylactosamine synthesis found in erythroid cells, indicating that lymphoid cells are not deficient in the processing enzymes or contain an alternative oligosaccharide processing pathway. Purified HEMPAS band 3 had an unaltered oligomeric structure but dimers aggregated more rapidly in detergent solution than normal band 3. The altered oligosaccharide structure did not affect the sensitivity of band 3 to proteolytic digestion in intact red cells but a greater amount of HEMPAS band 3 was associated with the cytoskeleton. The transport activities of AE1 and GLUT1 in HEMPAS erythrocytes were similar to those in normal controls. This shows that the HEMPAS glycosylation defect does not impair the functional accumulation of these two important erythrocyte membrane transporters even though it produces subtle structural changes in band 3 that result in its increased cytoskeletal interaction and self association in detergent solution.  相似文献   

20.
Crosslinking of glycoproteins in human erythrocyte ghosts   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号