首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horse liver alcohol dehydrogenase was reacted with glyoxal at different pH values ranging from 6.0 to 9.0. At pH 9.0 the enzyme undergoes a rapid activation over the first minutes of reaction, followed by a decline of activity, which reaches 10% of that of the native enzyme. Chemical analysis of the inactivated enzyme after sodium borohydride reduction shows that 11 argi-ine and 11 lysine residues per mole are modified. At pH 7.7 the enzyme activity increases during the first hour of the reaction with glyoxal and then decreases slowly. Chemical analysis shows that 4 arginine and 3 lysine residues per mole are modified in the enzyme at the maximum of activation. At pH 7.0 the enzyme undergoes a 4-fold activation. Chemical analysis shows that in this activated enzyme 3 lysine and no arginine residues per mole have been modified. Steady-state kinetic analysis suggests that the activated enzyme is not subjected to substrate inhibition and that its Michaelis constant for ethanol is three times larger than that of the native enzyme. The possible role of arginine and lysine residues in the catalytic function of liver alcohol dehydrogenase is discussed.  相似文献   

2.
Some structural and biochemical characteristics of polyamine oxidase (PAO) purified from maize shoots have been examined. The enzyme has only alanine as N-terminal amino acid and its N-terminal sequence shows a significant degree of homology with tryptophan 2-monooxygenase from Pseudomonas syringae pv. savastanoi. The pH optimum for the stability of the native enzyme is 5, similar to that of the barley leaf enzyme. Calorimetric analysis shows a single two-state transition at pH 6 with Tm 49.8 degrees. At pH 5 the thermal stability is increased by more than 14 degrees. Amine oxidation products, delta 1-pyrroline and diazabicyclononane, are competitive inhibitors of PAO activity (apparent Ki = 400 and 100 microM respectively). Moreover these compounds improve the thermal stability of the enzyme. N1-Acetylspermine, which is a good substrate for mammalian PAO, acts as a non-competitive inhibitor for the plant enzyme.  相似文献   

3.
At pH 6.3 both the native and subtilisin-digested fructose-1,6-bisphosphatase (Fru-P2-ase) molecules exhibit four fast-reacting thiol groups. The kinetic analysis shows that the pK value for the reaction of these thiols is 8.1. The increase of pH from 6.3 to 9.3 results in an uncovering of the remaining 20 thiol groups. In subtilisin-cleaved enzyme the rate of reaction of SH groups is considerably higher than in the native enzyme at pH 9.3, indicating changes in the microenvironments around thiols upon modification. A fluorescent label inserted on a fast-reacting SH group and neighboring NH2 group shifts the pH optimum of the enzyme to alkaline region and decreases its sensitivity toward AMP. Spectral analysis of labeled enzyme indicates that the labeled region of protein is more hydrophilic upon proteolytic digestion. It is concluded that a molecule of subtilisin-digested enzyme has a more relaxed structure than the native enzyme. The relaxation of the enzyme to a new conformation is reflected by urea addition, which mimics the effect of subtilisin digestion. Correlation of enzyme activity versus its sensitivity toward AMP (I 0.5), shows that at low concentrations of urea the active-site region at pH 6.3 is more affected than the region of AMP binding.  相似文献   

4.
Lactate dehydrogenase in Phycomyces blakesleeanus.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. An NAD-specific L(+)-lactate dehydrogenase (EC 1.1.1.27) from the mycelium of Phycomyces blakesleeanus N.R.R.L. 1555 (-) was purified approximately 700-fold. The enzyme has a molecular weight of 135,000-140,000. The purified enzyme gave a single, catalytically active, protein band after polyacrylamide-gel electrophoresis. It shows optimum activity between pH 6.7 and 7.5. 2. The Phycomyces blakesleeanus lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate, and its coenzyme, NADH, at pH 7.5, indicating the existence of multiple binding sites in the enzyme for these ligands. 3. At pH 6.0, the enzyme shows high substrate inhibition by pyruvate. 3-hydroxypyruvate and 2-oxovalerate exhibit an analogous effect, whereas glyoxylate does not, when tested as substrates at the same pH. 4. At pH 7.5, ATP, which inhibits the enzyme, acts competitively with NADH and pyruvate, whereas at pH 6.0 and low concentrations of ATP it behaves in a allosteric manner as inhibitor with respect to NADH, GTP, however, has no effect under the same experimental conditions. 5. Partially purified enzyme from sporangiophores behaves in entirely similar kinetic manner as the one exhibited by the enzyme from mycelium.  相似文献   

5.
Nicotinamide mononucleotide (NMN) adenylyltransferase has been purified to homogeneity from human placenta. The purification procedure consists of several chromatographic steps, including dye-ligand, adsorption, and hydrophobic interaction chromatography. The final enzyme preparation is homogeneous as judged by a single silver stainable band on both nondenaturating and denaturating polyacrylamide gels. The native enzyme shows a molecular weight of about 132,000, as determined by gel filtration on a Superose 12 HR 10/30 fast protein liquid chromatography column. The protein possesses a quaternary structure and is composed of four apparently identical M(r) 33,000 subunits. Isoelectrofocusing experiments give multiple pI values ranging from pH 4.7 to 6.6. Optimum pH study shows a plateau extending from pH 6.0 to pH 9.0. Km values for NMN, ATP, NAD+, and PPi are 38, 23, 67, and 125 microM, respectively. Kinetic analysis reveals a behavior consistent with an ordered sequential Bi-Bi mechanism. Among several metabolites tested only ADP-ribose and beta-NMNH were found to significantly inhibit the enzyme activity.  相似文献   

6.
Highly purified pyruvic decarboxylase (EC 4.1.1.1) from wheat germ catalyses the decarboxylation of hydroxypyruvate. A kinetic analysis of the activity of the enzyme with pyruvate and hydroxypyruvate as substrates suggests that a single enzyme is involved. The kinetics of decarboxylation are autocatalytic. The time lag before maximum activity is reached is affected by the concentration of hydroxypyruvate and the pH. The question whether or not hydroxypyruvate is a natural substrate for the enzyme remains unresolved, but it may be significant that at physiological pH (ca 7.5) the enzyme shows optimum activity with hydroxypyruvate, but negligible activity with pyruvate.  相似文献   

7.
The amidase activity of human alpha-thrombin has been studied in the pH range 5.5 to 10, and at four different chloride concentrations from 5 mM to 1 M. The Michaelis-Menten constant, Km, shows a bell-shaped dependence over the pH range studied, with a minimum around pH 8. The pH dependence of the catalytic constant, kcat, shows multiple inflection points especially at low (less than 0.1 M) chloride concentrations, thereby implicating the existence of multiple catalytic forms of the enzyme. A general linkage scheme is proposed for the analysis of the effect of protons on thrombin amidase activity, and experimental data have globally been analysed over the entire pH range in terms of such a scheme. Four proton-linked ionizable groups seem to be involved in the control of thrombin amidase activity. Two of these groups change their pK value upon substrate binding to the enzyme and account for the pH dependence of Km. All four groups control the catalytic activity of the enzyme which decreases with increasing protonation. Chloride has little effect on Km, while kcat changes significantly at pH less than 8. This effect is due to an increased enzymatic activity of the highly protonated intermediates at high chloride concentrations, as well as to the pK shift of two proton-linked ionizable groups.  相似文献   

8.
5'-Nucleotidase from rat heart   总被引:7,自引:0,他引:7  
Y Naito  J M Lowenstein 《Biochemistry》1981,20(18):5188-5194
5'-Nucleotidase has been extracted from rat heart and purified to apparent homogeneity. The enzyme is a glycoprotein. Gel electrophoresis in the presence of sodium dodecyl sulfate indicates that the apparent molecular weight of the subunit is 74 000 at several different gel concentrations. Cross-linking of the native enzyme with dimethylpimelimidate followed by gel electrophoresis shows that the enzyme is a dimer. The enzyme hydrolyzes all nucleoside 5'-monophosphates tested. A comparison of Vmax/Km for 14 different substrates shows that AMP is the best substrate. The enzyme shows lowest Km values for AMPS, AMP, isoAMP, GMP, and IMP. It shows no activity with nucleoside 2'- and 3'-monophosphates, sugar phosphates, and p-nitrophenyl phosphate, even when tested at high enzyme concentrations. The optimum activity of the enzyme occurs at pH 7.5 with AMP as substrate. Above this pH, buffer ions affect the activity in a complex manner, a second optimum being observed under some conditions. Magnesium ions activate the enzyme above pH 7.5 in the presence of some buffer ions but not of others. Magnesium ions show only a slight activation when the reaction is run in diethanolamine buffer, pH 9.5, at 30 degrees C; the activation in this buffer is considerably greater when the reaction is run at 37 degrees C. The enzyme is strongly inhibited by free ADP, maximum inhibition occurring below pH 6. The ADP inhibition is diminished as the pH is raised above 6, becoming negligible above pH9. The enzyme is inhibited by EDTA. The inhibition is partially reversed when the EDTA is removed from the enzyme by gel filtration. This as well as other evidence indicates that the enzyme contains a tightly bound metal ion.  相似文献   

9.
The 99 residue human immunodeficiency virus type 1 proteinase has been expressed in Escherichia coli as part of an autocleaving fusion protein. Expression of the fusion protein is toxic to the host cells, however yields of the released proteinase have been improved by optimising induction nad harvest times to increase culture biomass, and decrease degradation of the proteinase. Soluble proteinase was extracted from these cells by a simple and highly efficient three step process. N-terminal sequence analysis confirms that the enzyme preparation is highly pure and correctly autoprocessed. The proteinase cleaves peptide substrate IGCTLNFPISPIETV between F and P at pH 6.0 with a Km of 310 microM and a Kcat of 14s-1. The enzyme is sensitive to its ionic environment, showing stimulation of activity at high salt concentrations, and shows a pH optimising 5.5.  相似文献   

10.
The extracellular alpha-amylase activity of the yeast Schwanniomyces alluvius has been purified by anion-exchange chromatography on DEAE-cellulose and gel-filtration chromatography on Sephadex G-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and N-terminal amino acid analysis of the purified sample indicated that the enzyme preparation was homogeneous. The enzyme is a glycoprotein having a molecular mass of 52 kilodaltons (kDa) estimated by SDS-PAGE and 39 kDa by gel filtration on Sephadex G-100. Chromatofocusing shows that it is an acidic protein. It is resistant to trypsin but sensitive to proteinase K. Its activity is inhibited by the divalent cation chelators EDTA and EGTA and it is insensitive to sulfhydryl-blocking agents. Exogenous divalent cations are inhibitory as are high concentrations of monovalent salts. The enzyme has a pH optimum between 3.75 and 5.5 and displays maximum stability in the pH range of 4.0-7.0. Under the conditions tested, the activity is maximal between 45 and 50 degrees C and is very thermolabile. Analysis of its amino acid composition supports its acidic nature.  相似文献   

11.
Adenosine nucleosidase (adenosine ribohydrolase, E C 3.2.2.7) was purified from alfalfa leaf juice. The final preparation shows a single band on polyacrylamide gel electrophoresis; the enzyme activity is stable for 12 hrs between pH 5.5 and pH 8.5, but is completely lost on heating at 55 degrees C for 10 min. Optimal pH for the hydrolysis of adenosine is between pH 5 and pH 6. Among nine purine nucleosides tested, only adenosine, 2'-deoxyadenosine and purine riboside were hydrolyzed by the enzyme preparation. A Km value of 7 x 10(-6) M was found with adenosine as substrate at pH 7.4. Of the two reaction products, adenine exerted a weak inhibitory effect, while D-ribose was without effect on the initial rate of adenosine hydrolysis. The data reported are compared with those obtained on the enzymes from other plant sources.  相似文献   

12.
The u.v. difference spectra generated when methotrexate, trimethoprim or folate bind to Lactobacillus casei dihydrofolate reductase were analysed. The difference spectrum producted by methotrexate binding is shown to consist of three components: (a) one closely resembling that observed on protonation of methotrexate, reflecting an increased degree of protonation on binding; (b) a pH-independent contribution corresponding to a 40 nm shift to longer wavelengths of a single absorption band of methotrexate: (c) a component arising from perturbation of tryptophan residue(s) of the enzyme. Quantitative analysis of the pH-dependence of component (a) shows that pK of methotrexate is increased from 5.35 to 8.55 (+/-0.10) on binding. In contrast, folate is not protonated when bound to the enzyme at neutral pH. At pH7.5, where methotrexate is bound 2000 times more tightly than folate, one-third of the difference in binding energy between the two compounds arises from the difference in chaarge stage. A similar analysis of the difference spectra generated on trimethoprim binding demonstrates that this compound, too, shows an increase in pK on binding but only from 7.22 to 7.90 (+/-0.10), suggesting that its 2,4-diaminopyrimidine ring does not bind to the enzyme in precisely the same way as the corresponding moiety of methotrexate.  相似文献   

13.
pH feedback on immobilized enzymes is theoretically examined with respect to substrate and pH levels, strength of acids produced by the reaction, buffering and asymmetry of the system. All the productions of proton by the different reactions are taken into account by using a ‘symbolic species’ H*. The system of differential diffusion-reaction equations is then integrated using numerical methods. The local ‘effective enzyme activity’ modulated by an acidity factor enables us to predict and quantify evolutions of the systems: NonMichacIian behavior of an immobilized MichaeIis-Mentcn-type enzyme is shown, even when pH back-actions are excluded: the analysis of intramembranc pH profiles shows that the shift of the optimal pH is a complex function of the substrate and pH levels, the intrinsic pH dependence of the enzyme, and the membrane characteristics. This study may easily be transposed to other types of effector such as divalent cations and used in examining self-regulations of multienzyme systems where pH-active reactions are involved.  相似文献   

14.
The phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate lyase (pyruvate phosphorylating), EC 4.2.1.15) was purified to apparent homogeneity from extracts of Escherichia coli K12. The enzyme has a molecular weight of 140,000 as judged by gel filtration and sedimentation equilibrium analysis. The enzyme has a subunit molecular weight of 35,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, suggesting that the native form of the enzyme is a tetramer. This was confirmed by cross-linking the enzyme with dimethylsuberimidate and by analyzing the cross-linked material by gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme shows a narrow pH optimum between pH 6.5 and 7.0. The enzyme is stable for several months when stored at -20 degrees C in buffers containing phosphoenolpyruvate. Removal of phosphoenolpyruvate causes an irreversible inactivation of the enzyme. The enzyme is strongly inhibited by L-phenylalanine and to a lesser degree by dihydrophenylalanine. Molecular parameters of the previously isolated tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from E. coli (Schoner, R., and Herrmann, K.M. (1976) J. Biol. Chem. 251, 5440-5447) are compared with those of the phenylalanine-sensitive isoenzyme from the same organism.  相似文献   

15.
Affinity labeling of horse liver alcohol dehydrogenase with iodoacetate in the presence of the activator imidazole has been studied from pH 6.1 to 10.5. The pH profiles for the dissociation constants of iodoacetate from the free enzyme and the enzyme-imidazole complex and of imidazole from the free enzyme and the binary enzyme-iodoacetate complex were determined. The variation with pH of the dissociation constants of iodoacetate (KI) and imidazole (KL) have in common a pKa of 8.6 assigned to the zinc-water ionization, and a pKa near 10. Lysine modification by ethyl acetimidate results in a higher affinity of iodoacetate to the enzyme at high pH as the pKa values of the lysine residues are increased. The binding of iodoacetate and imidazole at each enzyme subunit shows negative cooperativity at pH less than 9, with an interaction constant of 4.8 at pH 6.1. Positive cooperativity is observed at pH greater than 9, with an interaction constant of 0.5 at pH 10.5. The pH-dependent change in cooperativity results from the removal of the zinc-water ionization when imidazole becomes coordinated to the catalytic zinc ion. When iodoacetate binds at the anion binding site, a large perturbation of the zinc-water ionization is observed. Unlike imidazole, the binding of 1,10-orthophenanthroline and iodoacetate shows positive cooperativity at both pH 8.2 and 10.0 with an interaction constant as low as 0.06 at pH 10.0.  相似文献   

16.
Malate dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum is purified 50-fold to electrophoretic homogeneity. The purified enzyme crystallizes readily. Native malate dehydrogenase shows a relative molecular mass of 144 000. It is a tetramer of identical subunits with a relative molecular mass of 36 600. Malate dehydrogenase from Thermoplasma uses both NADH and NADPH as coenzyme to reduce oxaloacetate. The enzyme shows A-side (pro-R) stereospecificity for both coenzymes. The pH optimum for the reduction of oxaloacetate in the presence of NADH is found to be at pH 8.1. At pH 7.4 the Km value for oxaloacetate is found to be 5.6 microM while for NADH a value of 11.7 microM is found. The homogeneous enzyme shows a turnover number of kcat = 108 s-1.  相似文献   

17.
Soluble succinate dehydrogenase prepared by butanol extraction reacts with N-ethylmaleimide according to first-order kinetics with respect to both remaining active enzyme and the inhibitor concentration. Binding of the sulfhydryl groups of the enzyme prevents its alkylation by N-ethylmaleimide and inhibition by oxaloacetate. A kinetic analysis of the inactivation of alkylating reagent in the presence of succinate or malonate suggests that N-ethylmaleimide acts as a site-directed inhibitor. The apparent first-order rate constant of alkylation increases between pH 5.8 and 7.8 indicating a pKa value for the enzyme sulfhydryl group equal to 7.0 at 22 degrees C in 50 mM Tris-sufate buffer. Certain anions (phosphate, citrate, maleate and acetate) decrease the reactivity of the enzyme towards the alkylating reagent. Succinate/phenazine methosulfate reductase activity measured in the presence of a saturating concentration of succinate shows the same pH-dependence as the alkylation rate by N-ethylmaleimide. The mechanism of the first step of succinate oxidation, including a nucleophilic attack of substrate by the active-site sulfhydryl group, is discussed.  相似文献   

18.
1. A beta-N-acetylhexosaminidase was purified 330-fold from the digestive gland of the terrestrial mollusc Helicella ericetorum Müller. 2. Its pH optimum is 4.5 for both beta-N-acetylglucosaminidase and beta-N-acetylgalactosaminidase activities in two buffer solutions; it is fully stable at 37 degrees C for 2h in the pH range 3.8--4.6 and shows one isoelectric point (pH 4.83). 3. The estimated mol.wt. is between 120,000 and 145,000. 4. The enzyme shows an endo-beta-N-acetylhexosaminidase activity on natural substrates such as ovalbumin, ovomucoid, chondroitin 4-sulphate, chitin and hyaluronic acid. 5. Two forms of the enzyme were separated by preparative polyacrylamide-gel electrophoresis. 6. Km and Vmax. for p-nitrophenyl 2-acetamido-2-deoxy-beta-D-glucopyranoside and p-nitrophenyl 2-acetamide-2-deoxy-beta-D-galactopyranoside are 0.43 mM, 30.1 micronmol of p-nitrophenol/min per mg and 0.19 mM, 8.6 micronmol of p-nitrophenol/min per mg respectively. 7. It is inhibited by Hg2+, Fe3+, acetate, some lactones, N-acetylgalactosamine, N-acetylglucosamine and mannose. 8. Mixed-substrates analysis and Ki values for competitive inhibitors indicated that beta-N-acetylglucosaminidase and beta-N-acetylgalactosaminidase activities are catalysed by the enzyme at the same active site.  相似文献   

19.
Goat liver catalase (EC 1.11.1.6) has been purified to homogeneity using the techniques of ammonium sulfate fractionation, DEAE-cellulose chromatography and gel-filtration through Ultrogel AcA-34 involving two alternating steps of column chromatography. The homogeneity of the purified enzyme was tested by native and sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunodiffusion and immunoelectrophoresis. The enzyme is a tetramer having a subunit molecular weight of 58,000 +/- 3000, contains six sulfhydryl groups per mole of the enzyme and shows pH optima at pH 6.8 and 7.7. The kinetic data show no cooperativity between the substrate binding sites. Tryptophan, indoleacetic acid, cysteine, formaldehyde and sodium azide inhibit the enzyme non-competitively with Ki values of 4 +/- 1, 2.5 +/- 0.8, 6 +/- 1.5, 0.48 +/- 0.15 and 0.0013 +/- 0.0003 mM, respectively. Sulfhydryl group binding agents as well as thiol reagents inhibit the enzyme activity.  相似文献   

20.
Ferrochelatase with an Mr of 42,700 Da and a pI of 7.35 has been purified to homogeneity from chironomidae larvae. The activity of the enzyme reached maximum at pH 7.8 and decreased with the increase of pH. The enzyme activity varied with temperature and showed maximum activity around 37°C. The purified enzyme was active towards protoporphyrin but inactive towards other porphyrins. The specific enzyme activity of ferrochelatase from chironomidae is about 10-fold higher than that of the rat. Electrophoresis of the purified fractions shows that the enzyme contains only one single polypeptide. The soluble ferrochelatase contained one mole of iron in each mole of the enzyme. The N-terminal sequence analysis of the enzyme shows a high percentage of conserved regions of the enzyme among other species. The enzyme properties are similar to those of the mammalian ferrochelatases except with slightly higher specific activity. Chironomidae ferrochelatase appeared to be more heat resistant and less susceptible than its mammalian equivalent to inhibition by lead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号