首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dynamic structural rearrangement in the phylogenetically conserved helix 27 of Escherichia coli 16S rRNA has been proposed to directly affect the accuracy of translational decoding by switching between "accurate" and "error-prone" conformations. To examine the function of helix 27 in eukaryotes, random and site-specific mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA have been characterized. Mutations at positions of yeast 18S rRNA corresponding to E. coli 886 (rdn8), 888 (rdn6), and 912 (rdn4) increased translational accuracy in vivo and in vitro, and caused a reduction in tRNA binding to the A-site of mutant ribosomes. The double rdn4rdn6 mutation separated the killing and stop-codon readthrough effects of the aminoglycoside antibiotic, paromomycin, implicating a direct involvement of yeast helix 27 in accurate recognition of codons by tRNA or release factor eRF1. Although our data in yeast does not support a conformational switch model analogous to that proposed for helix 27 of E. coli 16S rRNA, it strongly suggests a functional conservation of this region in tRNA selection.  相似文献   

2.
ESF1 is required for 18S rRNA synthesis in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1       下载免费PDF全文
We report that Esf1p (Ydr365cp), an essential, evolutionarily conserved nucleolar protein, is required for the biogenesis of 18S rRNA in Saccharomyces cerevisiae. Depletion of Esf1p resulted in delayed processing of 35S precursor and a striking loss of 18S rRNA. Esf1p physically associated with ribosomal proteins and proteins involved in 18S rRNA biogenesis. Consistent with its role in 18S rRNA biogenesis, Esf1p also physically associated with U3 and U14 snoRNAs, but did not appear to be a core component of the SSU processome. These data indicate that Esf1p plays a direct role in early pre-rRNA processing.  相似文献   

3.
rRNAs are the central players in the reactions catalyzed by ribosomes, and the individual rRNAs are actively involved in different ribosome functions. Our previous demonstration that yeast 5S rRNA mutants (called mof9) can impact translational reading frame maintenance showed an unexpected function for this ubiquitous biomolecule. At the time, however, the highly repetitive nature of the genes encoding rRNAs precluded more detailed genetic and molecular analyses. A new genetic system allows all 5S rRNAs in the cell to be transcribed from a small, easily manipulated plasmid. The system is also amenable for the study of the other rRNAs, and provides an ideal genetic platform for detailed structural and functional studies. Saturation mutagenesis reveals regions of 5S rRNA that are required for cell viability, translational accuracy, and virus propagation. Unexpectedly, very few lethal alleles were identified, demonstrating the resilience of this molecule. Superimposition of genetic phenotypes on a physical map of 5S rRNA reveals the existence of phenotypic clusters of mutants, suggesting that specific regions of 5S rRNA are important for specific functions. Mapping these mutants onto the Haloarcula marismortui large subunit reveals that these clusters occur at important points of physical interaction between 5S rRNA and the different functional centers of the ribosome. Our analyses lead us to propose that one of the major functions of 5S rRNA may be to enhance translational fidelity by acting as a physical transducer of information between all of the different functional centers of the ribosome.  相似文献   

4.
The antifungal agent, Sinefungin (SF), has been shown to be an inhibitor of transmethylation reactions. We report here the effects of SF on the production and methylation of rRNA in the yeast, Saccharomyces cerevisiae. Under conditions of SF treatment which have been shown to affect the regulation of cell proliferation in this yeast, pulse-chase labeling experiments using [methyl-3H]methionine and [3H]uracil indicated that methyl incorporation into rRNA during a short labeling period was inhibited, and stable 18 S rRNA production was differentially decreased. Other experiments quantitating modified nucleotides in newly produced rRNA showed that stable molecules were methylated. Taken together, these results suggest that SF slows methylation of rRNA, and is associated with differential loss of undermethylated 18 S rRNA species.  相似文献   

5.
Location of the 5.8S rRNA gene of Saccharomyces cerevisiae.   总被引:1,自引:1,他引:0       下载免费PDF全文
Direct DNA sequence analysis of Saccharomyces cerevisiae ribosomal DNA cloned in an Escherichia coli plasmid revealed part of the structural gene for 5.8S rRNA at one end of a 700-base-pair EcoRI fragment. Taken with the previously established EcoRI restriction map of the ribosomal repeat unit, this sequence establishes that the yeast 5.8S RNA segment is located between the 18S and 28S segments in the 42S rRNA precursor and in the DNA which codes for it.  相似文献   

6.
In yeast, the 3' end of mature 18S rRNA is generated by endonucleolytic cleavage of the 20S precursor at site D. Available data indicate that the major cis-acting elements required for this processing step are located in relatively close proximity to the cleavage site. To identify these elements, we have studied the effect of mutations in the mature 18S and ITS1 sequences neighboring site D on pre-rRNA processing in vivo. Using clustered point mutations, we found that alterations in the sequence spanning site D from position -5 in 18S rRNA to +6 in ITS1 reduced the efficiency of processing at this site to different extents as demonstrated by the lower level of the mature 18S rRNA and the increase in 20S pre-rRNA in cells expressing only mutant rDNA units. More detailed analysis revealed an important role for the residue located 2 nt upstream from site D (position -2), whereas sequence changes at position -1, +1, and +2 relative to site D had no effect. The data further demonstrate that the proposed base pairing between the 3' end of 18S rRNA and the 5' end of ITS1 is not important for efficient and accurate processing at site D, nor for the formation of functional 40S ribosomal subunits. These results were confirmed by analyzing the accumulation of the D-A2 fragment derived from the mutant 20S pre-rRNA in cells that lack the Xrn1p exonuclease responsible for its degradation. The latter results also showed that the accuracy of cleavage was affected by altering the spacer sequence directly downstream of site D but not by mutations in the 18S rRNA sequence preceding this site.  相似文献   

7.
The chlorinated ethylenes 1,1-dichloroethylene (vinylidene chloride), trans-1,2-dichloroethylene, trichloroethylene, and tetrachloroethylene (perchloroethylene) were assayed for their ability to induce mitotic gene conversion and point mutation as well as mitotic aneuploidy in diploid strains of the yeast Saccharomyces cerevisiae. From strain D7 late logarithmic-phase cells grown in 20% glucose liquid medium, containing a high level of cytochrome P-450, as well as stationary-phase cells combined with an exogenous metabolic activating system (S9) were used, in order to activate the chlorinated compounds and to produce electrophilic mutagenic intermediates. Only 1,1-dichloroethylene exhibited a dose-dependent genetic activity, while the other ethylenes did not. The 2 ways of metabolic activation were compared and were found to cause approximately the same effect. In contrast to the findings with strain D7, vinylidene chloride, trans-1,2-dichloroethylene, and trichloroethylene induced, without metabolic activation, mitotic chromosomal malsegregation in strain D61.M. The presence of liver homogenate as an activating system did not enhance the respective frequencies of chromosome loss. In the case of tetrachloroethylene, sufficient data have not become available, since this compound showed a highly toxic effect towards yeast cells, decreasing the rate of surviving cells to less than 30% at a concentration of 9.8 mM.  相似文献   

8.
The internal control region of the Saccharomyces cerevisiae 5S rRNA gene has been characterized in vivo by genomic DNase I footprinting and by mutational analyses using base substitutions, deletions or insertions. A high copy shuttle vector was used to efficiently express mutant 5S rRNA genes in vivo and isotope labelling kinetics were used to distinguish impeded gene expression from nascent RNA degradation. In contrast to mutational studies in reconstituted systems, the analyses describe promoter elements which closely resemble the three distinct sequence elements that have been observed in Xenopus laevis 5S rRNA. The results indicate a more highly conserved structure than previously reported with reconstituted systems and suggest that the saturated conditions which are used in reconstitution studies mask sequence dependence which may be physiologically significant. Footprint analyses support the extended region of protein interaction which has recently been observed in some reconstituted systems, but mutational analyses indicate that these interactions are not sequence specific. Periodicity in the footprint provides further detail regarding the in vivo topology of the interacting protein.  相似文献   

9.
10.
We have screened numerous different yeast species for the presence of sequences homologous to the intron of the mitochondrial 21S rRNA gene of Saccharomyces cerevisiae (intron r1) and found them in all Kluyveromyces species, some of the Saccharomyces species and none of the other yeasts tested. We have determined the nucleotide sequence of the r1-intron in K. thermotolerans and compared it with that of S. cerevisiae. The two introns are inserted at the same position within the 21S rRNA gene. They contain homologous internal open reading frames (ORFs) initiated at the same AUG codon which can be aligned over their entire length. Several silent multi-substitutions indicate that these intronic ORFs represent selectively conserved functional genes. Other intron segments, on the contrary, reveal short blocks of extensive homology separated by non-homologous stretches and/or additions-deletions. Comparison of our two yeast r1-introns with equivalent introns of N. crassa and A. nidulans mitochondria reveals that introns with very similar RNA secondary structures can accommodate different types of ORFs.  相似文献   

11.
12.
G Simchen  Y Kassir 《Génome》1989,31(1):95-99
Normally, meiosis and sporulation in Saccharomyces cerevisiae occur only in diploid strains and only when the cells are exposed to starvation conditions. Diploidy is determined by the mating-type system (the genes MAT, RME1, IME1), whereas the starvation signal is transmitted through the adenylate cyclase - protein kinase pathway (the genes CDC25, RAS2, CDC35 (CYR1), BCY1, TPK1, TPK2, TPK3). The two regulatory pathways converge at the gene IME1, which is a positive regulator of meiosis and whose early expression in sporulating cells correlates with the initiation of meiosis. Sites upstream (5') of IME1 appear to mediate in the repression of the gene by repressors originating from both the mating-type and the cyclase--kinase pathways.  相似文献   

13.
Hu XH  Wang MH  Tan T  Li JR  Yang H  Leach L  Zhang RM  Luo ZW 《Genetics》2007,175(3):1479-1487
Uncovering genetic control of variation in ethanol tolerance in natural populations of yeast Saccharomyces cerevisiae is essential for understanding the evolution of fermentation, the dominant lifestyle of the species, and for improving efficiency of selection for strains with high ethanol tolerance, a character of great economic value for the brewing and biofuel industries. To date, as many as 251 genes have been predicted to be involved in influencing this character. Candidacy of these genes was determined from a tested phenotypic effect following gene knockout, from an induced change in gene function under an ethanol stress condition, or by mutagenesis. This article represents the first genomics approach for dissecting genetic variation in ethanol tolerance between two yeast strains with a highly divergent trait phenotype. We developed a simple but reliable experimental protocol for scoring the phenotype and a set of STR/SNP markers evenly covering the whole genome. We created a mapping population comprising 319 segregants from crossing the parental strains. On the basis of the data sets, we find that the tolerance trait has a high heritability and that additive genetic variance dominates genetic variation of the trait. Segregation at five QTL detected has explained approximately 50% of phenotypic variation; in particular, the major QTL mapped on yeast chromosome 9 has accounted for a quarter of the phenotypic variation. We integrated the QTL analysis with the predicted candidacy of ethanol resistance genes and found that only a few of these candidates fall in the QTL regions.  相似文献   

14.
The conditional ero1-1 mutant, deficient in the ER-localized PDI oxidase Ero1p, is blocked in disulfide bond formation under restrictive conditions, such as high temperature, lack of oxygen, or high concentrations of membrane-permeant thiols. Previous studies of the physiological consequences of the ero1-1 mutation were carried out in a leu2 mutant. The ero1-1 leu2 strain does not grow in standard synthetic complete medium at 30 degrees C, a defect that can be remedied by increasing the L-leucine concentration in the medium or by transforming the ero1-1 leu2 strain with the LEU2 wild-type allele. In addition, the LEU2 gene can partially complement the growth impairment at 37 degrees C of the ero1-1 leu2 mutant. The leucine transporter Bap2p exhibits a dramatic decrease in stability in an ero1-1 strain, which may account for the pronounced leucine demand observed in the ero1-1 leu2 mutant.  相似文献   

15.
Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction.  相似文献   

16.
Triazine chloro derivatives: atrazine, simazine manifest no mutagenic and recombinogenic properties in yeasts; triazine methylthio derivatives: prometryne, semeron (desmetryne) generate both genetic events with low concentrations of 0.5 and 5 mg/l. It is found that prometryne is more able to generate point mutations, while semeron--to generate mitotic recombinations. In this case frequency of experimental prototrophs is twice higher than the control level.  相似文献   

17.
18.
The cryophilic wine yeasts Saccharomyces bayanus YM-84 and YM-126 were used for hybridization with the mesophilic wine yeast Saccharomyces cerevisiae OC-2. All six hybrids were stable in tetrad analysis and pulsed field gel electrophoresis, even after twenty subcultures over two years. The fermentabilities of these hybrids at a low temperature of 7°C were superior to the mesophilic wine yeast and the same as the cryophilic wine yeasts. Conversely, their fermentabilities at the intermediate temperatures of 28 and 35°C were similar to the mesophilic wine yeast. For laboratory-scale wine-making using Koshu grape juice at 10°C, the fermentability of these hybrids was superior to the mesophilic wine yeast. They also produced higher amounts of malic acid and flavor compounds such as higher alcohols, β-phenylethyl alcohol, isoamyl acetate and β-phenylethyl acetate, and lower amounts of acetic acid than those of OC-2. These results suggest that the cryophilic wine yeast S. bayanus is useful for improving the low temperature fermentation ability of wine yeast strains.  相似文献   

19.
A strain of Saccharomyces cerevisiae, defective in small subunit ribosomal RNA processing, has a mutation in YOR145c ORF that converts Gly235 to Asp. Yor145c is a nucleolar protein required for cell viability and has been reported recently to be present in 90S pre-ribosomal particles. The Gly235Asp mutation in YOR145c is found in a KH-type RNA-binding domain and causes a marked deficiency in 18S rRNA production. Detailed studies by northern blotting and primer extension analyses show that the mutant strain impairs the early pre-rRNA processing cleavage essentially at sites A1 and A2, leading to accumulation of a 22S dead-end processing product that is found in only a few rRNA processing mutants. Furthermore, U3, U14, snR10 and snR30 snoRNAs, involved in early pre-rRNA cleavages, are not destabilized by the YOR145c mutation. As the protein encoded by YOR145c is found in pre-ribosomal particles and the mutant strain is defective in ribosomal RNA processing, we have renamed it as RRP20.  相似文献   

20.
The role of helix 6, which forms the major portion of the most 5′-located expansion segment ofSaccharomyces cerevisiae 18S rRNA, was studied by in vivo mutational analysis. Mutations that increased the size of the helical part and/or the loop, even to a relatively small extent, abolished 18S rRNA formation almost completely. Concomitantly, 35S pre-rRNA and an abnormal 23S precursor species accumulated. rDNA units containing these mutations did not support cell growth. A deletion removing helix 6 almost completely, on the other hand, had a much less severe effect on the formation of 18S rRNA, and cells expressing only the mutant rRNA remained able to grow, albeit at a much reduced rate. Disruption of the apical A·U base pair by a single point mutation did not cause a noticeable reduction in the level of 18S rRNA but did result in a twofold lower growth rate of the cells. This effect could not be reversed by introduction of a second point mutation that restores base pairing. We conclude that both the primary and the secondary structure of helix 6 play an important role in the formation and the biological function of the 40S subunit. Edited by: S.A. Gerbi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号