首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of exercise on insulin binding and glucose metabolism in muscle   总被引:1,自引:0,他引:1  
To elucidate the mechanism of enhanced insulin sensitivity by muscle after exercise, we studied insulin binding, 2-deoxy-D-[1-14C]glucose (2-DOG) uptake and [5-3H]glucose utilization in glycolysis and glycogenesis in soleus and extensor digitorum longus (EDL) muscles of mice after 60 min of treadmill exercise. In the soleus, glycogenesis was increased after exercise (P less than 0.05) and remained sensitive to the action of insulin. Postexercise insulin-stimulated glycolysis was also increased in the soleus (P less than 0.05). In the EDL, glycogenesis was increased after exercise (P less than 0.05). However, this was already maximal in the absence of insulin and was not further stimulated by insulin (0.1-4 nM). The disposal of glucose occurred primarily via the glycolytic pathway (greater than 60%) in the soleus and EDL at rest and after exercise. The uptake of 2-DOG uptake was not altered in the soleus after exercise (4 h incubation at 18 degrees C). However, with 1-h incubations at 37 degrees C, a marked increase in 2-DOG uptake after exercise was observed in the soleus (P less than 0.05) in the absence (0 nM) and presence of insulin (0.2-4 nM) (P less than 0.05). A similar postexercise increase in 2-DOG uptake occurred in EDL. Despite the marked increase in glucose uptake and metabolism, no changes in insulin binding were apparent in either EDL or soleus at 37 degrees C or 18 degrees C. This study shows that the postexercise increase of glucose disposal does not appear to be directly attributable to increments in insulin binding to slow-twitch and fast-twitch muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. Although high concentrations of insulin affect both synthesis and degradation of skeletal-muscle protein, it is not known to what extent these effects occur with physiological concentrations. The effects of a physiological concentration of insulin (100 mu units/ml) on muscle protein synthesis, measured with [3H]tyrosine, and on muscle protein degradation, measured by tyrosine release in the presence of cycloheximide, were studied in mouse soleus and extensor digitorum longus muscles in vitro. 2. Insulin significantly stimualated protein synthesis in both muscles, but an inhibition of degradation was seen only in the extensor digitorum longus. 3. Starvation for 24 h decreased the rate of protein synthesis and increased the rate of breakdown in the extensor digitorum longus. Sensitivity to insulin-stimulation of proteins synthesis in the soleus was increased by starvation. 4. ;a 20%-surface-area full-skin-thickness dorsal scald injury produced a fall in total protein content in soleus and extensor digitorum muscles, maximal on the third day after injury. Soleus muscles 2 days after injury showed an impairment of protein synthesis; degradation was unaffected and neither synthesis nor degradation in vitro was significantly affected in the extensor digitorum longus. 5. The advantages and limitations of studies of protein metabolism in vitro are discussed.  相似文献   

3.
1. Regulation of glucose uptake was compared between extensor digitorum longus (EDL) and soleus (Sol) muscles in rats. 2. Insulin stimulated glucose uptake more in EDL than in Sol. 3. Under high concentrations of insulin, the glucose uptake was higher in EDL than Sol. 4. Inhibition of oxidative phosphorylation by anoxia or an uncoupler stimulated glucose uptake more in EDL than in Sol. 5. Anoxia abolished the effect of insulin on glucose uptake in both EDL and Sol. 6. The blocker to glucose transport system reduced glucose uptake more in Sol than in EDL.  相似文献   

4.
Rates of protein synthesis were significantly lower in the cut soleus and extensor digitorum longus muscles than in their uncut counterparts. Rates of protein degradation were significantly higher in cut soleus muscles, but not in cut extensor digitorum longus muscles as compared with their uncut controls. Concentrations of ATP and phosphocreatine were significantly lower in cut soleus and extensor digitorum longus muscles after incubation in vitro in contrast with respective control uncut muscles. These data indicate that cutting of muscle fibres alters rates of protein synthesis and degradation, in addition to altering concentrations of high-energy phosphates. Since these findings stressed the importance of using intact muscles to study protein metabolism, additional studies were made on intact muscles in vitro. Stretched soleus muscles had higher concentrations of high-energy phosphates at the end of an incubation period than did unstretched muscles. However, the length of the soleus, extensor digitorum longus and diaphragm muscles during incubation did not affect rates of protein degradation.U  相似文献   

5.
The metabolic integrity of fully regenerated transplants was investigated by measuring induced changes in glycogen concentration. The extensor digitorum longus and the soleus muscles were cross transplanted: the extensor digitorum longus into the soleus muscle bed (SOLT) and the soleus muscle into the extensor digitorum longus bed (EDLT). The histochemical fiber type distribution of the regenerated muscles was determined and was found to transform in cross-transplanted EDLT and SOLT. After transplantation and regeneration, both muscles had initially low glycogen concentrations. However, the EDLT glycogen concentration was not significantly different from that of the contralateral extensor digitorum longus control muscle after 60 days. In the SOLT, glycogen gradually increased but remained less than in the contralateral soleus control muscle. SOLT and control soleus muscles responded with a significant glycogen depletion to an epinephrine dose two orders of magnitude less than the lowest dose affecting glycogen levels in EDLT and extensor digitorum longus muscles. These results indicate that transplanted muscles are capable of regenerating normal glycogenolytic responses and that the sensitivity of the response observed depends on the site of transplantation and is related to the type of innervation and histochemical fiber type.  相似文献   

6.
1. Rats were treated with dexamethasone for 4 days before measurement of the rates of lactate formation [which is an index of hexose transport; see Challiss, Lozeman, Leighton & Newsholme (1986) Biochem. J. 233, 377-381] and glycogen synthesis in response to various concentrations of insulin in isolated incubated soleus and extensor digitorum longus muscle preparations. 2. The concentration of insulin required to stimulate these processes half-maximally in soleus and extensor digitorum longus muscles isolated from control rats was about 100 muunits/ml. 3. Dexamethasone increases the concentration of insulin required to stimulate glycolysis half-maximally in soleus and extensor digitorum longus preparations to 250 and 300 muunits/ml respectively. The respective insulin concentrations necessary to stimulate glycogen synthesis half-maximally were about 430 and 370 muunits/ml for soleus and extensor digitorum longus muscle preparations isolated from steroid-treated rats. 5. Dexamethasone treatment did not change the amount of insulin bound to soleus muscle.  相似文献   

7.
The effect of dietary administration of clenbuterol on soleus and extensor digitorum longus muscles was studied after 4 and 21 days. Both muscles showed an increase in wet weight with no significant change in total fibre number. After 4 days fibre cross-sectional areas were increased in soleus, but not in extensor digitorum longus, and after 21 days there was a change in fibre frequencies in extensor digitorum longus but not soleus muscles.  相似文献   

8.
Protein synthesis and degradation, and redox state were measured in soleus and extensor digitorum longus muscles of rats up to 12 days after injection of streptozotocin. Muscle growth was slower in these animals apparently due to slower protein synthesis throughout the duration of diabetes. Up to day 4 after injection of streptozotocin or withdrawal of insulin from treated, diabetic animals, the muscle ratio of lactate/pyruvate, an indicator of the cytoplasmic NAD+ redox couple, was lower and protein degradation was faster than in control muscles. Thereafter, the ratio of lactate/pyruvate was greater and protein degradation was slower than in size- or age-matched control muscles. Insulin treatment in vitro or in vivo increased lactate/pyruvate and decreased proteolysis. Therefore, in muscles of streptozotocin-diabetic rats, the initial increase and later fall in proteolysis, and the inhibition of proteolysis by insulin, may correlate with opposite changes in NADH/NAD+.  相似文献   

9.
We studied the in vitro effect of corticosterone on insulin binding, uptake of 2-deoxy-D-glucose, glycolysis, and glycogenesis in the soleus and extensor digitorum longus (EDL) of Swiss-Webster mice. In each experiment, one muscle (soleus/EDL) was incubated with corticosterone (0.1, 1, 50, and 100 micrograms/mL) and the respective contralateral muscle was incubated without corticosterone, but at the same insulin and pH levels. Corticosterone did not affect insulin binding in both muscles. However, corticosterone decreased the uptake of 2-deoxy-D-glucose and the rate of glycolysis and glycogenesis in both muscles when the dose was pharmacologic (50 and 100 micrograms/mL), but not when it was physiologic (0.1 and 1 microgram/mL). For glycolysis and glycogenesis, the suppression was greater in the EDL when compared with the soleus. This suppression was seen in both basal and insulin-stimulated conditions. In this in vitro system, where the experimental muscle is not exposed to prior hyperinsulinemia as in the in vivo model, corticosterone, at pharmacologic doses, affects postreceptor events without altering the insulin binding in the skeletal muscle.  相似文献   

10.
The primary purpose of this study was to determine the effect of prior exercise on insulin-stimulated glucose uptake with physiological insulin in isolated muscles of mice. Male C57BL/6 mice completed a 60-min treadmill exercise protocol or were sedentary. Paired epitrochlearis, soleus, and extensor digitorum longus (EDL) muscles were incubated with [3H]-2-deoxyglucose without or with insulin (60 microU/ml) to measure glucose uptake. Insulin-stimulated glucose uptake for paired muscles was calculated by subtracting glucose uptake without insulin from glucose uptake with insulin. Muscles from other mice were assessed for glycogen and AMPK Thr172 phosphorylation. Exercised vs. sedentary mice had decreased glycogen in epitrochlearis (48%, P < 0.001), soleus (51%, P < 0.001), and EDL (41%, P < 0.01) and increased AMPK Thr172 phosphorylation (P < 0.05) in epitrochlearis (1.7-fold), soleus (2.0-fold), and EDL (1.4-fold). Insulin-independent glucose uptake was increased 30 min postexercise vs. sedentary in the epitrochlearis (1.2-fold, P < 0.001), soleus (1.4-fold, P < 0.05), and EDL (1.3-fold, P < 0.01). Insulin-stimulated glucose uptake was increased (P < 0.05) approximately 85 min after exercise in the epitrochlearis (sedentary: 0.266 +/- 0.045 micromol x g(-1) x 15 min(-1); exercised: 0.414 +/- 0.051) and soleus (sedentary: 0.102 +/- 0.049; exercised: 0.347 +/- 0.098) but not in the EDL. Akt Ser473 and Akt Thr308 phosphorylation for insulin-stimulated muscles did not differ in exercised vs. sedentary. These results demonstrate enhanced submaximal insulin-stimulated glucose uptake in the epitrochlearis and soleus of mice 85 min postexercise and suggest that it will be feasible to probe the mechanism of enhanced postexercise insulin sensitivity by using genetically modified mice.  相似文献   

11.
We have studied the development of high affinity insulin receptors and insulin-stimulated responses in the differentiating nonfusing muscle cell line BC3H-1. In the logarithmic growth phase, these myoblasts exhibit very low levels of insulin binding and no detectable insulin-stimulated glucose or amino acid uptake. Following the cessation of cell division and subsequent spontaneous differentiation, the resulting myocytes develop a 5-fold increase in specific 125I-insulin binding and demonstrate physiologic insulin-stimulated glucose and amino acid uptake (100% increase above baseline) with half-maximum stimulation at 1-3 nM in agreement with the known in vivo and in vitro insulin sensitivity of muscle tissue. Insulin stimulation of 2-deoxyglucose uptake is detectable within 3 min, becomes maximal within 15 min, and is mediated by a rapid increase of plasma membrane transport units, as determined by D-glucose-inhibitable cytochalasin B binding, resulting in a 2-fold increase in the Vmax for 2-deoxyglucose transport with no change in Km. Myocyte insulin binding is specific, reversible, and saturable, yielding equilibrium within 18 h at 4 degrees C. Scatchard analysis identified the high affinity insulin receptor with a Kd of 0.5 nM at 4 degrees C. The myocytes also demonstrate sensitive down-regulation of cell surface insulin receptors, with a maximum decrease of 50% in cell surface insulin binding following exposure to 20 nM insulin for 18 h at 37 degrees C. Since the differentiation of this muscle cell line from myoblasts to nonfusing myocytes is accompanied by the development of high affinity insulin receptors and physiologic insulin-stimulated glucose and alpha-methylaminoisobutyric acid uptake, this continuously cultured system provides an excellent model for the study of differentiation and mechanism of insulin action in muscle, its quantitatively most significant target tissue.  相似文献   

12.
Summary The postnatal development, between 0 and 90 days, of three hindlimb muscles and diaphragm of the rat was investigated with respect to fiber types and diameter (histochemistry) and substrate oxidation rates and enzyme activities (biochemistry). The process of muscle fiber differentiation into mature patterns was evaluated by visual classification into 3 or 4 groups having different staining intensities for 3 enzyme-histochemical reactions, enabling 26 fiber types to be distinguished. These exhibited specific sizes and growth rates that varied among the muscles. One of the hindleg muscles (flexor digitorum brevis) remained much more immature than soleus and extensor digitorum longus.The histochemical and biochemical findings correlated well. The capacity for pyruvate and palmitate oxidation, and the activities of cytochrome c oxidase and citrate synthase, increased markedly between 9 and 37 days in soleus and extensor digitorum longus (except citrate synthase in the latter) but not in flexor digitorum brevis. Creatine kinase activity increased in all hindlimb muscles. Both the capacity and the activity of pyruvate oxidation (determined in homogenates and intact isolated muscles, respectively), were in accordance with the fiber type composition. In contrast to oxidation capacity, the activity of pyruvate oxidation decreased after birth until the mature stage, when a value of 18–42% of that of early postnatal muscles was recorded.  相似文献   

13.
The activities of five enzymes have been studied quantitatively in denervated extensor digitorum longus, gastrocnemius and soleus muscles of 24-month-old rats. The results have been compared with those obtained from normal muscles of a similar age group of rats. Three weeks after denervation, the activity of hexokinase was increased in gastrocnemius and extensor digitorum longus. Phosphofructokinase, lactate dehydrogenase, malate dehydrogenase and 3-hydroxyacyl-CoA-dehydrogenase showed decreased activities. These results suggest that enzyme which represents glucose uptake increased its activity in fast muscles and that enzymes for anaerobic glycolysis, lactate fermentation, citric acid cycle and beta-oxidation had a decreased activity in slow and fast muscles.  相似文献   

14.
We tested the effects of inhibiting the carbonic anhydrase activity of rat soleus and extensor digitorum longus muscles on the isometric contractile properties and the resistance to fatigue. SOL and EDL muscles from female rats were incubated in vitro in the presence of methazolamide, a specific inhibitor of carbonic anhydrase, before determining their contractile properties. Methazolamide had no effects on the contractile properties of the soleus muscle (10(-5) or 10(-3) M) and extensor digitorum longus (10(-3) M), except for the half-relaxation time of the soleus muscle which increased significantly. Values for half-relaxation time were significantly increased with both concentrations of the inhibitor. Muscles were then submitted to a fatigue protocol lasting 30 min. During the fatigue test, no significant difference was observed between control and 10(-5) M methazolamide soleus muscles. In presence of 10(-3) M methazolamide however, the soleus muscle showed a significantly increased resistance to fatigue compared with control preparations. No significant effect was observed with the extensor digitorum longus muscle exposed to 10(-3) M methazolamide. Results are discussed in terms of the presence of two different isoforms of carbonic anhydrase that may be associated with calcium uptake and energy metabolic processes, respectively.  相似文献   

15.
1. The activities of 2-oxoglutarate dehydrogenase, transketolase, thiamine pyrophosphokinase and thiamine triphosphatase and the concentrations of thiamine phosphates were almost the same between rat extensor digitorum longus and soleus muscles at 2 weeks of age. 2. These enzyme activities changed after 3 weeks of age in a different way depending on the muscle phenotype. 3. Thiamine diphosphate level and the activity of 2-oxoglutarate dehydrogenase increased only in soleus muscle and thiamine triphosphate level increased only in extensor digitorum longus during development.  相似文献   

16.
Denervation potentiated the cooling-induced contractures and the halothane-cooling contractures of isolated extensor digitorum longus and soleus muscles of the mouse. These effects were more striking in extensor digitorum longus than in soleus muscles. Significant increases in the peak amplitudes of the halothane-cooling contractures of both muscles and of the cooling contractures of soleus muscle were observed within 2 and 7 days of denervation. The potentiation of the contractures persisted for 90 days, the period of this study. Denervation (greater than 2 days) endowed extensor digitorum longus with the ability to generate cooling contractures in the absence of halothane. The rate of tension development of cooling-induced contractures in the absence or presence of halothane was significantly greater in denervated (2-90 days) than in innervated muscles. Denervation also reduced the effectiveness of procaine in inhibiting the halothane-cooling contractures. It is proposed that the potentiation of cooling-induced contractures in denervated muscles results primarily from an increase in the rate of efflux and in the quantity of Ca2+ released from the sarcoplasmic reticulum, upon cooling and (or) when challenged with halothane.  相似文献   

17.
An experimental protocol designed to assess fatigability in motor units has been applied to two hindlimb muscles of anesthetized adult rats to study the effects of whole-muscle fatigue on the isometric twitch. Both soleus and extensor digitorum longus exhibited a linear relationship between fatigability (i.e., force decline after a 360-s fatigue test) and the magnitude of the twitch force following the fatigue test. Twitch force after the fatigue test was potentiated (i.e., greater than the value before the fatigue test) in many muscles, despite the development of considerable fatigue. This coexistence of fatigue and twitch potentiation was observed in 7% (5/70) of soleus and 48% (31/64) of extensor digitorum longus muscles. The coexistence was exhibited only by the least fatigable muscles of the fast-contracting extensor digitorum longus. The extensor digitorum longus muscles that did not exhibit twitch potentiation probably experienced a higher proportion of muscle-fiber inactivation, such as due to failure of neuromuscular propagation, that was induced by the fatigue regimen.  相似文献   

18.
Hind leg muscles of female rats (85-99 g) were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D-[U-14C]glucose, release of lactate and pyruvate, incorporation of D-[U-14C]glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-[1,2-3H]glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased by 50% the concentration of insulin receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.  相似文献   

19.
Phosphatidylinositol phosphodiesterase activity was determined in cytosol prepared from rat slow (soleus) and fast (extensor digitorum longus) muscles. The substrate was prepared by incubation of sarcoplasmic reticulum with myo-[2-3H]inositol. The enzyme hydrolysed both membrane-bound and extracted phosphatidylinositol. The activity determined with the isolated phospholipid exhibited an optimum at pH 5.5. Ca2+ ions stimulated the activity. The enzyme specific activity was higher in cytosol prepared from soleus muscle than in that from extensor digitorum longus muscle. After section of the motor nerve, the activity of the enzyme increased in both muscles up to 36 h and then declined. A function for this enzyme in the control of acetylcholine sensitivity in muscle is discussed.  相似文献   

20.
1. The decrease in wet weight and noncollagen protein (NCP) was faster and greater in extensor digitorum longus (EDL) during fasting than in soleus (Sol) muscles in rats. 2. During refeeding, recovery was completed faster in Sol than in EDL. 3. Glucose uptake in skeletal muscle increased significantly during fasting on both a per wet weight and NCP basis. 4. This increase was faster and greater in EDL than Sol. 5. The initial increase in glucose uptake was greater during refeeding than fasting only in EDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号