首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
P A Baeuerle  D Baltimore 《Cell》1988,53(2):211-217
In cells that do not express kappa immunoglobulin light chain genes, the kappa enhancer-binding protein NF-kappa B is not evident in either cytoplasmic or nuclear fractions. By denaturation, size fractionation, and renaturation, however, NF-kappa B activity can be revealed in cytosolic fractions, showing that the DNA-binding protein is present but inhibited in its binding activity. By using a variety of protocols involving the dissociating agents sodium desoxycholate and formamide, as much cytosolic NF-kappa B can be found in the fraction from unstimulated 70Z/3 pre-B cells as is found in the nuclear extract from phorbol ester-activated cells. We conclude that both 70Z/3 and HeLa cells contain apparently cytosolic NF-kappa B in a form with no evident DNA-binding activity, and phorbol esters both release the inhibition of binding and cause a translocation to the nucleus.  相似文献   

5.
It is not known whether one or both of the interleukin 1 (IL1) receptors mediates the induction of the DNA-binding protein NF-kappa B. Nuclear extracts of the murine lines EL4.NOB.1 and 70Z/3, which bear the type I (80 kDa) and type II (67 kDa) IL1 receptor, respectively, were analyzed by an electrophoretic mobility shift assay. A 265-base pair sequence of the human serum amyloid A gene or a synthetic oligonucleotide each containing the NF-kappa B site were used as the DNA probes. IL1 induction of NF-kappa B was rapid (optimal at 15-30 min) and transient in both cell types. The IL1 receptor antagonist (IL1ra), which binds strongly to the type I receptor, inhibited the NF-kappa B response in both cell lines. IL1ra did not bind to the type II receptor on 70Z/3 cells as judged by competition for binding with 125I-IL1 alpha. When 125I-IL1ra binding to 70Z/3 cells was measured, a small number (10/cell) of high affinity sites (Kd = 5 x 10(-12) M) were detected. These were likely to have been type I receptor because an antibody to this inhibited the NF-kappa B induction in 70Z/3 cells (as well as EL4). Potential signal transduction mechanisms involving protein kinase C or oxygen radicals were studied. Phorbol 12-myristate 13-acetate induced NF-kappa B with a similar time course to IL1 in 70Z/3 but only after 4 h in EL4.IL1 was unaffected by a protein kinase C inhibitor (staurosporine). H2O2 did not mimic IL1, and IL1 was not inhibited by an antioxidant. The type I receptor mediates the induction of NF-kappa B in response to IL1 via a signaling mechanism that still remains to be identified.  相似文献   

6.
NF-kappa B activation is a crucial late step in the induction of immunoglobulin kappa light-chain gene expression in pre-B cells by lipopolysaccharide (LPS). We have analyzed NF-kappa B activation in three independent mutant lines of 70Z/3 pre-B cells which are unresponsive to LPS. All three variant cell lines failed to activate NF-kappa B when induced with LPS or the phorbol ester 12-O-tetradecanoylphorbol 13-acetate. However, all three cell lines contained functional NF-kappa B, as revealed by detergent treatment of cytoplasmic extracts. Moreover, cycloheximide induced limited activation of NF-kappa B comparable to that in wild-type 70Z/3 pre-B cells in two of the three variant lines. These results indicate that the mutations blocking kappa gene induction in these variant 70Z/3 pre-B-cell lines affect NF-kappa B activation.  相似文献   

7.
8.
9.
10.
11.
12.
The activation of NF-kappa B-like activities (called NF-kappa B) by tumor necrosis factor alpha (TNF alpha) and the phorbol ester phorbol 12-myristate 13-acetate (PMA) were compared. High levels of NF-kappa B activity were found 2 to 4 min after TNF alpha addition to human HL60 cells and lasted for at least 3 h, although the half-life of active NF-kappa B was less than 30 min. Inactive NF-kappa B, however, was relatively stable. NF-kappa B activation by TNF alpha was initially cycloheximide insensitive, but maintenance of NF-kappa B activity required ongoing protein synthesis and continuous stimulation by TNF alpha. Thus, the cells did not remain in an activated state without stimulation. In HL60 cells, NF-kappa B induction by PMA required 30 to 45 min and was completely dependent on de novo protein synthesis, while PMA (and interleukin-1) induced NF-kappa B activity rapidly in mouse 70Z/3 cells via a protein synthesis-independent mechanism. The NF-kappa B-like activities obtained under each condition behaved identically in methylation interference and native proteolytic fingerprinting assays. The NF-kappa B-like factors induced are thus all very similar or identical. We suggest that cell-specific differences in the protein kinase C-dependent activation of NF-kappa B may exist and that TNF alpha and PMA may induce expression of the gene(s) encoding NF-kappa B.  相似文献   

13.
We show that both the lipopolysaccharide (LPS)-induced activation of NF-kappa DNA binding and kappa gene expression are blocked by treating murine pre-B lymphocyte 70Z/3 cells with 5'-methylthioadenosine (MTA), an inhibitor of several S-adenosylmethionine-dependent methylation reactions. We further show that the LPS-induced incorporation of radioactivity from [methyl-3H]methionine into methyl ester-like linkages on a group of membrane polypeptides is also inhibited by MTA treatment, suggesting the involvement of protein methylation reactions in the LPS signal transduction pathway. We also find that NF-kappa B and kappa gene activation in LPS-treated 70Z/3 cells is blocked by mevinolin, an inhibitor that prevents protein isoprenylation. Interestingly, mevinolin-treated cells also exhibited a marked reduction in the methylation of membrane proteins. Neither MTA nor mevinolin significantly inhibited NF-kappa B activation by phorbol myristate acetate, suggesting that these agents act early in signal transduction. These results provide the first evidence that carboxyl methylated and/or isoprenylated proteins play an essential role in the LPS-signaling pathway.  相似文献   

14.
The activation of nuclear factor kappa B (NF-kappa B) in intact cells is mechanistically not well understood. Therefore we investigated the modifications imposed on NF-kappa B/I kappa B components following stimulation and show that the final step of NF-kappa B induction in vivo involves phosphorylation of several members of the NF-kappa B/I kappa B protein families. In HeLa cells as well as in B cells, TNF-alpha rapidly induced nuclear translocation primarily of p50-p65, but not of c-rel. Both NF-kappa B precursors and I kappa B alpha became strongly phosphorylated with the same kinetics. In addition to the inducible phosphorylation after stimulation, B lymphocytes containing constitutive nuclear NF-kappa B revealed constitutively phosphorylated p65 and I kappa B alpha. Phosphorylation was accompanied by induced processing of the precursors p100 and p105 and by degradation of I kappa B alpha. As an in vitro model we show that phosphorylation of p105 impedes its ability to interact with NF-kappa B, as has been shown before for I kappa B alpha. Surprisingly, even p65, but not c-rel, was phosphorylated after induction in vivo, suggesting that TNF-alpha selectively activates only specific NF-kappa B heteromers and that modifications regulate not only I kappa B molecules but also NF-kappa B molecules. In fact, cellular NF-kappa B activity was phosphorylation-dependent and the DNA binding activity of p65-containing NF-kappa B was enhanced by phosphorylation in vitro. Furthermore, we found that the induction by hydrogen peroxide of NF-kappa B translocation to the nucleus, which is assumed to be triggered by reactive oxygen intermediates, also coincided with incorporation of phosphate into the same subunits that were modified after stimulation by TNF-alpha. Thus, phosphorylation appears to be a general mechanism for activation of NF-kappa B in vivo.  相似文献   

15.
We have previously reported that interleukin (IL)-1 beta causes beta-adrenergic hyporesponsiveness in cultured human airway smooth muscle (HASM) cells by increasing cyclooxygenase (COX)-2 expression. The purpose of this study was to determine whether p38 mitogen-activated protein (MAP) kinase is involved in these events. IL-1 beta (2 ng/ml for 15 min) increased p38 phosphorylation fourfold. The p38 inhibitor SB-203580 (3 microM) decreased IL-1 beta-induced COX-2 by 70 +/- 7% (P < 0.01). SB-203580 had no effect on PGE(2) release in control cells but caused a significant (70-80%) reduction in PGE(2) release in IL-1 beta-treated cells. IL-1 beta increased the binding of nuclear proteins to the oligonucleotides encoding the consensus sequences for activator protein (AP)-1 and nuclear factor (NF)-kappa B, but SB-203580 did not affect this binding, suggesting that the mechanism of action of p38 was not through AP-1 or NF-kappa B activation. The NF-kappa B inhibitor MG-132 did not alter IL-1 beta-induced COX-2 expression, indicating that NF-kappa B activation is not required for IL-1 beta-induced COX-2 expression in HASM cells. IL-1 beta attenuated isoproterenol-induced decreases in HASM stiffness as measured by magnetic twisting cytometry, and SB-203580 abolished this effect. These results are consistent with the hypothesis that p38 is involved in the signal transduction pathway through which IL-1 beta induces COX-2 expression, PGE(2) release, and beta-adrenergic hyporesponsiveness.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号