首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is a study on the recovery and recycling of copolymer in aqueous two-phase systems containing random copolymers of ethylene oxide (EO) and propylene oxide (PO). The random copolymers separate from water solution when heated above the lower critical solution temperature (LCST). The primary phase systems were composed of EOPO copolymer and hydroxypropyl or hydroxyethyl starch. After phase separation the upper EOPO phase was removed and subjected to temperature induced phase separation. Copolymers with different EO/PO compositions have been investigated, EO50PO50 [50% EO and 50% PO (w/w)], EO30PO70 and EO20PO80. The temperature required for thermoseparation decreases when the PO content of the copolymer is increased. The effect on the recovery of copolymer after addition of salts, a second polymer or protein was investigated. The added components increased the recovery of copolymer after thermoseparation, e.g., increased the amount copolymer separated from the water phase after thermoseparation. Recycling of copolymer and measurements of polymer concentrations in the primary top and bottom phases after repeated recycling steps was performed. The fluctuation in polymer concentration of the phases was very small after recycling up to four times. Partitioning of the proteins BSA and lysozyme was studied in primary phase systems after recycling of copolymer. The partition coefficients of total protein and lysozyme was not significantly changed during recycling of copolymer. More than 90% of the copolymer could be recovered in the thermoseparation step by optimising the temperature and time for thermoseparation. In repeated phase partitionings in EOPO–starch systems the EO50PO50 copolymer could be recovered to 77% including losses in primary system and thermoseparation, which is equivalent to a total copolymer reuse of 4.3 times.  相似文献   

2.
Genetic engineering has been used for the fusion of peptides, with different length and composition, on a protein to study the effect on partitioning in aqueous two-phase systems containing thermoseparating polymers. Peptides containing 2-6 tryptophan residues or tryptophan plus 1-3 lysine or aspartate residues, were fused near the C-terminus of the recombinant protein ZZT0, where Z is a synthetic IgG-binding domain derived from domain B in staphylococcal protein A. The partitioning behavior of the peptides and fusion proteins were studied in an aqueous two-phase system composed of dextran and the thermoseparating ethylene oxide-propylene oxide random copolymer, EO30PO70. The zwitterionic compound beta-alanine was used to reduce the charge-dependent salt effects on partitioning, and to evaluate the contribution to the partition coefficient from the amino acid residues, Trp, Lys, and Asp, respectively. Trp was found to direct the fusion proteins to the EO-PO copolymer phase, while Asp and Lys directed them to the dextran phase. The effect of sodium perchlorate and triethylammonium phosphate on the partitioning of the fusion proteins was also studied. Salt effects were directly proportional to the net charge of the fusion proteins. Sodium perchlorate was found to be 3.5 times more effective in directing positively charged proteins to the EO-PO copolymer phase compared to the effect of triethyl ammonium phosphate on negatively charged proteins. An empirical correlation has been tested where the fusion protein partitioning is a result of independent contributions from unmodified protein, fused peptide, and salt effects. A good agreement with experimental data was obtained which indicates the possibility, by independent measurements of partitioning of target protein and fusion peptide, to approximately predict the fusion protein partitioning.  相似文献   

3.
Genetic engineering has been used to construct hydrophobically modified fusion proteins of cutinase from Fusarium solani pisi and tryptophan-containing peptides. The aim was to enhance the partitioning of the tagged protein in a novel aqueous two-phase system formed by only one water-soluble polymer. The system was based on a hydrophobically modified random copolymer of ethylene oxide (EO) and propylene oxide (PO) units, HM-EOPO, with myristyl groups (C(14)H(29)) at both ends. The HM-EOPO polymer is strongly self-associating and has a lower critical solution temperature (cloud point) at 12 degrees C in water. At temperatures above the cloud point a two-phase system is formed with a water top phase and a polymer-enriched bottom phase. By adding a few percent of hydroxypropyl starch polymer, Reppal PES 200, to the system, it is possible to change the densities of the phases so the HM-EOPO-enriched phase becomes the top phase and Reppal-enriched phase is the bottom phase. Tryptophan-based peptides strongly preferred the HM-EOPO rich phase. The partitioning was increased with increasing length of the peptides. Full effect of the tag as calculated from peptide partitioning data was not found in the protein partitioning. When a short spacer was introduced between the protein and the tag the partitioning was increased, indicating a better exposure to the hydrophobic core of the polymer micelle. By adding a hydrophilic spacer between the protein and trp-tag, it was possible to increase the partitioning of cutinase 10 times compared to wild-type cutinase partitioning. By lowering the pH of the system and addition of NaCl, the partitioning of tagged protein was further increased towards the HM-EOPO phase. After isolating the HM-EOPO phase, the temperature was increased and the protein was back-extracted from the HM-EOPO phase to a fresh water phase.  相似文献   

4.
The separation of host and recombinant Escherichia coli bacterial cells has been studied using the surface-sensitive technique of partitioning in aqueous two-phase polymer systems. Experiments were designed to probe charge-and hydrophobicity-related property differences of antibiotic-resistant recombinant cells and their antibiotic-sensitive hosts. Differential partitioning was observed in both charge-sensitive and non-charge-sensitive phase systems for three host-recombinant cell systems, but the non-charge-related effects appear to have a greater impact on partitioning behavior. This result suggests that plasmid-encoded products related to antibiotic resistance modify the surface hydrophobicity of the E. coli bacterial cell and that these differences can be exploited for cell separation.  相似文献   

5.
Partitioning in aqueous two-phase systems: recent results   总被引:4,自引:0,他引:4  
  相似文献   

6.
Partitioning in aqueous two-phase systems: an overview   总被引:2,自引:0,他引:2  
  相似文献   

7.
This study evaluates the influence of type of salt and temperature on the partition coefficient of caseinomacropetide (CMP) to determine the best conditions for the recovery of CMP in aqueous two-phase systems (ATPS) composed by poly(ethylene glycol) (PEG) 1500 and an inorganic salt (potassium phosphate, sodium citrate, lithium sulfate or sodium sulfate). In all systems, CMP presented affinity for the PEG-rich phase. The PEG1500+lithium sulfate showed the highest values of partitioning coefficient. In addition, thermodynamic parameters (DeltaH degrees , DeltaS degrees , DeltaG degrees) as a function of temperature, were calculated for the system PEG1500-sodium citrate at different PEG concentrations and the results imply thermodynamic differences between partitioning of CMP in this system.  相似文献   

8.
The partition behavior of glycomacropeptide (GMP) was determined in polyethylene glycol (PEG) and sodium citrate aqueous two-phase systems (ATPS). It was found that the partitioning of GMP depends on PEG molar mass, tie line length, pH, NaCl concentration and temperature. The obtained data indicates that GMP is preferentially partitioned into the PEG phase without addition of NaCl at pH 8.0. Larger tie line lengths and higher temperatures favor GMP partition to the PEG phase. Furthermore, it was verified that PEG molar mass and concentration have a slight effect on GMP partition. The increase in the molar mass of PEG induces a reduction of the protein solubility in the top PEG rich phase, being shown that the use of PEG1500 is beneficial for the extraction of GMP. A protein recovery higher than 85% was obtained in the top phase of these systems, clearly demonstrating its suitability as a starting point for the separation of GMP.  相似文献   

9.
The effectiveness of thermoseparating polymer-based aqueous two-phase systems (ATPS) in the enzymatic hydrolysis of starch was investigated. In this work, the phase diagrams of PEO-PPO-2500/ammonium sulfate and PEO-PPO-2500/magnesium sulfate systems were determined at 25 degrees C. The partition behavior of pure alpha-amylase and amyloglucosidase in four ATPS, namely, PEO-PPO/(NH(4))(2)SO(4), PEO-PPO/MgSO(4), polyethylene glycol (PEG)/(NH(4))(2)SO(4), and PEG/MgSO(4), was evaluated. The effects of phase-forming component concentrations on the enzyme activity and partitioning were assessed. Partitioning of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii was also investigated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. The PEO-PPO-2500/MgSO(4) system was extremely attractive for starch hydrolysis. Polymer-based starch hydrolysis experiments containing PEO-PPO-2500/MgSO(4) indicated that the use of ATPS had a significant effect on soluble starch hydrolysis. Batch starch hydrolysis experiments with PEO-PPO/salt two-phase systems resulted in higher production of maltose or glucose and exhibited remarkably faster hydrolysis. A 22% gain in maltose yield was obtained as a result of the increased productivity. This work is the first reported application of thermoseparating polymer ATPS in the processing of starches. These results reveal the potential for thermoseparating polymer-enhanced extractive bioconversion of starch as a practical technology.  相似文献   

10.
The green fluorescent protein GFPuv has been genetically engineered to investigate the influence of N-terminal tyrosine extensions in aqueous two-phase systems. Fusions in the N-terminus affected the protein expression, and tags containing three tyrosines and prolines influenced the expression favorably. This effect is probably due to changes in mRNA stability, because the amounts of corresponding mRNAs correlated with the amounts of GFPuv proteins. The partitioning was investigated in two different aqueous two-phase systems, a two-polymer system composed of EO30PO70/dextran and a PEG/salt system with potassium phosphate. Partitioning in the PEG/salt system generally was more favorable than in the EO30PO70/dextran system. Tags with three tyrosines resulted in higher partitioning toward the EO30PO70- and PEG-rich phases, respectively. The effect of adding proline residues to the tag was also investigated, and the partitioning effect of the tag was enhanced when prolines were included in the tags with three tyrosines. The best tyrosine tag, Y3P2, increased the partition coefficient 5 times in the PEG/salt system. Thermoseparation of the EO30PO70 phase allowed recovery of 83% Y3P2-GFPuv protein in a water phase.  相似文献   

11.
Purification of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii, was investigated in the ethylene oxide-propylene oxide random copolymer (PEO-PPO)/(NH(4))(2)SO(4), and poly(ethylene glycol) (PEG)/(NH(4))(2)SO(4) aqueous two-phase systems. MJA1 partitioned in the top polymer-rich phase, while the remainder of proteins partitioned in the bottom salt-rich phase. It was found that enzyme recovery of up to 90% with a purification factor of 3.31 was achieved using a single aqueous two-phase extraction step. In addition, the partition behavior of pure amyloglucosidase in polymer/salt aqueous two-phase systems was also evaluated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. This work is the first reported application of thermoseparating polymer aqueous two-phase systems for the purification of extremophile enzymes.  相似文献   

12.
An effective system has been developed for purification of apolipoprotein A-1 from Escherichia coli fermentation solution and human plasma using aqueous two-phase extraction and thermal-phase separation. The system included non-ionic surfactants (Triton or Tween) and as top phase-forming polymer a random copolymer of ethylene oxide (50%) and propylene oxide (50%), Breox PAG 50A 1000, was used. The bottom phase-forming polymer was either hydroxypropyl starch, Reppal PES 100 and PES 200, or hydroxyethyl starch, Solfarex A 85. The top-phase-forming polymer and the surfactants are thermoseparating in water solution, i.e., when heated a water phase and a polymer/surfactant phase are formed. Recombinant apolipoprotein A-1, the Milano variant, was extracted from E. coli fermentation solution in a primary Breox-starch phase system followed by thermal separation of the Breox phase where the target protein was recovered in the water phase. Both in the Breox-starch system and in the water-Breox system Triton X-100 was partitioned to the Breox phase. The addition of non-ionic surfactants to the Breox-starch system had strong effect on the purification and yield of the amphiphilic apolipoprotein A-1. In a system containing 17% Breox PAG 50A 1000, 12% Reppal PES 100 and addition of 1% Triton X-100 the purification factor was 7.2, and the yield 85% after thermal separation of the Breox phase. Recycling of copolymer and surfactant was possible after thermal separation of copolymer phase. Approximately 85% of the copolymer and surfactant could be recycled in each extraction cycle. DNA could be strongly partitioned to the starch phase in the primary-phase system. This resulted in a 1000-fold reduction of E. coli DNA in the apolipoprotein A-1 solution obtained after thermoseparation. In extraction from human plasma containing low concentrations of apolipoprotein A-1, it was possible to reach a purification factor of 420 with 98% yield. By reducing the volume ratio to 0.1 Apo A-1 could be concentrated in a small volume of top phase (concentration factor 10) with a yield of 85% and a purification factor of 110.  相似文献   

13.
Summary A preparation of DEAE-dextran was described, which can form an aqueous two-phase system with hydroxypropyldextran. Acid proteases showed strong partition in this system due to its large interfacial electrical potential. Partition coefficients of the enzymes changed rapidly when salts were added.  相似文献   

14.
The partitioning of bovine trypsin and alpha-chymotrypsin--proteases of similar physico-chemical properties--in different polyethyleneglycol/sodium citrate aqueous two-phase systems was investigated. The effect of different factors such as polyethyleneglycol molecular weight, pH, tie line length, temperature and the presence of an inorganic salt on the protein partition coefficient were analysed. Both a decrease in PEG molecular weight and an increase in pH led to a higher partition coefficient for both enzymes. Aqueous two-phase systems formed by PEG of molecular weight 3350 and citrate pH 5.2 showed the best separation capability which was enhanced in presence of sodium chloride 3%. The transfer of both proteins to the top phase was associated with negative enthalpic and entropic changes.  相似文献   

15.
Detergent-based aqueous two-phase systems have the advantage to require only one auxiliary chemical to induce phase separation above the cloud point. In a systematic study the efficiency of tryptophan-rich peptide tags was investigated to enhance the partitioning of an enzyme to the detergent-rich phase using cutinase as an example. Up to 90% enzyme activity could be extracted in a single step from whole broth of recombinant Saccharomyces cerevisiae expressing cutinase variants carrying a (WP)4 tag. In contrast, the extraction yield of wild type cutinase was 2–3% only. The detergent concentration and the temperature are the main parameters to optimize the extraction yield. Considering availability, extraction yields, and price the detergent Agrimul NRE 1205 served best for enzyme recovery.  相似文献   

16.
As part of an ongoing research effort on aqueous two-phase systems (ATPSs) with volatile salts, this work describes the partitioning behavior of a series of amino acids, namely -serine, glycine, -alanine, -valine, -methionine, -isoleucine, and -phenylalanine, in these systems. The results show that amino acids partition in a similar way in polymer–volatile salt ATPSs and in traditional polymer–salt ATPSs. Increasing amino acid hydrophobicities lead to increasing partition coefficients. Moreover, the common linear relationship between the logarithm of the partition coefficient and the tie line length is observed here as well. Furthermore, the relation between relative partition coefficients and relative hydrophobicities of amino acids in the extraction systems investigated in this work is comparable to that in other extraction systems.  相似文献   

17.
The mass spectrometric strategy including three steps is presented for primary structure determination of the N-terminally blocked peptides. First, the C-terminal sequencing is performed by using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry coupled with carboxypeptidase Y digestion. Then, the peptide is cleaved according to the obtained C-terminal sequence information and the resulting peptides are identified by mass spectrometry and Edman degradation after fractionation by reverse-phase chromatography. Finally, the N-terminal fragment is sequenced by tandem mass spectrometry. The strategy was successfully applied to the sequence determination of two novel N-terminally blocked peptides named EAFP1 and EAFP2.  相似文献   

18.
This study presents the partitioning and purification of recombinant Bacillus badius phenylalanine dehydrogenase (PheDH) in aqueous two-phase systems (ATPS) composed of polyethylene glycol 6000 (PEG-6000) and ammonium sulfate. A single-step operation of ATPS was developed for extraction and purification of recombinant PheDH from E. coli BL21 (DE3). The influence of system parameters including; PEG molecular weight and concentration, pH, (NH(4))(2)SO(4) concentration and NaCl salt addition on enzyme partitioning were investigated. The best optimal system for the partitioning and purification of PheDH was 8.5% (w/w) PEG-6000, 17.5% (w/w) (NH(4))(2)SO(4) and 13% (w/w) NaCl at pH 8.0. The partition coefficient, recovery, yield, purification factor and specific activity values were of 92.57, 141%, 95.85%, 474.3 and 10424.97 U/mg, respectively. Also the K(m) values for L-phenylalanine and NAD(+) in oxidative deamination were 0.020 and 0.13 mM, respectively. Our data suggested that this ATPS could be an economical and attractive technology for large-scale purification of recombinant PheDH.  相似文献   

19.
Peptide hormones labelled with radioactive iodine were partitioned into the aqueous two-phase polymer systems developed by Albertsson (1960) and the conditions required for separation of free from antibody-bound hormone have been worked out. Hormones studied included insulin, growth hormone, parathyroid hormone and [arginine]-vasopressin. Free and antibody-bound hormones show different distribution coefficients in a number of systems tested; two systems, the dextran-polyethylene glycol and dextran sulphate-polyethylene glycol system, give optimum separation. Free hormones distribute readily into the upper phase of these systems, whereas hormone-antibody complexes, as well as uncombined antibody, are found almost completely in the lower phase. Various factors including the polymer concentration, the ionic composition of the system, the nature of the hormone and the nature of added serum protein differentially affect the distribution coefficients for free and antibody-bound hormone. These factors can be adequately controlled so as to improve separation. The two-phase partition method has been successfully applied to measure binding of labelled hormone to antibody under standard radioimmunoassay conditions. It exhibits several advantages over the method of equilibration dialysis and can be applied to the study of non-immunological interactions.  相似文献   

20.
Partitioning of the proteins from cheese whey, bovine serum albumin and porcine insulin were analysed using aqueous two-phase systems (ATPS) prepared with PEG–phosphate, PEG–citrate and PEG–maltodextrin (MD). Proteins were quantified through one of the following methods: FPLC, Bradford and spectrophotometry at 280 nm. Results showed that whey proteins partitioned unevenly on the phases of the systems used, with α-lactoalbumin (α-La) concentrated in the upper phase and β-lactoglobulin (β-Lg) in the lower. Albumin in PEG–MD systems concentrated in the MD-rich lower phase. Porcine insulin showed great affinity with the PEG-rich phase, its partition coefficient was always over 10 and increases with PEG molecular mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号