首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to clarify mechanisms responsible for cisplatin-induced nephrotoxicity together with the effect of selenium. Rats were divided into 3 groups: the cisplatin group; cisplatin (60 mg/kg) was administered intraperitoneally once, the cisplatin + Se group; cisplatin (60 mg/kg) once, and selenious acid (10 mumol/kg) were administered intraperitoneally once a day for 5 consecutive days, the control group; untreated. In each group, mitochondrial respiratory function, enzymic activities in mitochondrial respiratory chain and glutathione peroxidase, and plasma creatinine and BUN contents were measured. In the cisplatin group, decreases in mitochondrial respiratory function, enzymic activities in the respiratory chain and glutathione peroxidase, and increases in plasma creatinine and BUN contents were observed compared with the control group, while the cisplatin + Se group lessened these impairments. These results suggested that cisplatin-induced nephrotoxicity was closely related to mitochondrial dysfunction through the impairment of glutathione peroxidase. This toxicity might be ascribed to free radical mediated-injury. We propose here that, with selenium, higher dose administration of cisplatin to patients might be applicable.  相似文献   

2.
Since reductions in cardiac high-energy phosphate content and dysfunction of mitochondrial activities have been demonstrated after doxorubicin exposure, one mechanism of doxorubicin cardiotoxicity has been thought to be an interference with mitochondrial energy metabolism. To determine whether mitochondrial dysfunction is induced by acute drug exposure, isolated rat hearts were perfused with 10(-5) M doxorubicin for 70 min followed by mitochondrial isolation. Rates of electron transport, creatine kinase activity, acceptor control, respiratory control, and ADP/O ratios were assayed and correlated to doxorubicin-induced abnormalities in left ventricular function. At doses of doxorubicin sufficient to cause a marked deterioration of left ventricular systolic pressure and a rise in end-diastolic pressure, no decreases were noted in the measured mitochondrial parameters with either glutamate plus malate or succinate as respiratory substrates. In fact, in some cases the rates of electron transport were higher in mitochondria isolated from the treated hearts. In addition, isolated heart mitochondria were directly incubated in doxorubicin at doses as high as 10(-4) M for up to 70 min at 0 and 20 degrees C and 1.5 min at 37 degrees C. Under these conditions functional impairment of mitochondrial respiration was also not detected. Therefore, it appears that acute doxorubicin cardiotoxicity cannot be related to primary mitochondrial defects in high-energy phosphate metabolism. These data lend further support to the notion that doxorubicin cardiotoxicity may be fundamentally related to changes in coronary vascular resistance and resultant damage induced by hypoperfusion.  相似文献   

3.
Resveratrol (RSV), a natural compound, is known for its effects on energy homeostasis. Here we investigated the effects of RSV and possible mechanism in insulin secretion of high-fat diet rats. Rats were randomly divided into three groups as follows: NC group (animals were fed ad libitum with normal chow for 8 weeks), HF group (animals were fed ad libitum with high-fat diet for 8 weeks), and HFR group (animals were treated with high-fat diet and administered with RSV for 8 weeks). Insulin secretion ability of rats was assessed by hyperglycemic clamp. Mitochondrial biogenesis genes, mitochondrial respiratory chain activities, reactive oxidative species (ROS), and several mitochondrial antioxidant enzyme activities were evaluated in islet. We found that HF group rats clearly showed low insulin secretion and mitochondrial complex dysfunction. Expression of silent mating type information regulation 2 homolog- 1 (SIRT1) and related mitochondrial biogenesis were significantly decreased. However, RSV administration group (HFR) showed a marked potentiation of glucose-stimulated insulin secretion. This effect was associated with elevated SIRT1 protein expression and antioxidant enzyme activities, resulting in increased mitochondrial respiratory chain activities and decreased ROS level. This study suggests that RSV may increase islet mitochondrial complex activities and antioxidant function to restore insulin secretion dysfunction induced by high-fat diet.  相似文献   

4.
This study was designed to elucidate harmful effects of acetylcholine on myocardial mitochondrial electron transport activity. Rats were cervically dislocated 3 h and 6 h after oral administration of pyridostigmine, an acetylcholinesterase inhibitor. The myocardial mitochondrial electron-transport activity (NADH-cytochrome c reductase, succinate-cytochrome c reductase and cytochrome c oxidase), and myocardial acetylcholine and norepinephrine concentrations were measured. Activities of cytochrome c oxidase were significantly decreased in the pyridostigmine-3h and the pyridostigmine-6h groups compared with untreated rats. Activity of NADH-cytochrome c reductase was significantly decreased 6 h after administration. No significant changes were observed in those of succinate-cytochrome c reductase among all groups. Pyridostigmine increased significantly myocardial acetylcholine concentration, however, no significant changes of myocardial norepinephrine concentrations were observed among all groups. It is indicated that these mitochondrial injuries might be dependent on an increase in acetylcholine level and independent of norepinephrine.  相似文献   

5.
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.  相似文献   

6.
Abstract

Altered mitochondrial function and free radical-mediated tissue damage have been suggested as an important pathological event in isoproterenol (ISO)-induced cardiotoxicity. This study was undertaken to know the preventive effect of morin on mitochondrial damage in ISO-induced cardiotoxicity in male Wistar rats. Myocardial infarction (MI) in rats was induced by ISO (85 mg/kg) at an interval of 24 hours for 2 days. Morin was given to rats as pre-treatment for 30 days orally using an intragastric tube. ISO-treated rats showed a significant elevation of mitochondrial thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (HP) level and pre-treatment with morin significantly prevented the increase of TBARS and HP level to near normality. The level of enzymic and non-enzymic antioxidants was decreased significantly in ISO-treated rats and pre-treatment with morin significantly increased the levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and reduced glutathione to normality. The activities of mitochondrial enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase were decreased significantly in ISO-treated myocardial ischemic rats and upon pre-treatment with morin restored these enzymes activity to normality. In addition, the decreased activities of cytochrome-C oxidase and NADH-dehydrogenases were observed in ISO-treated rats and pre-treatment with morin prevented the activities of cytochrome-C oxidase and NADH-dehydrogenase to normality. Pre-treatment with morin favorably restored the biochemical and functional parameters to near normal indicating morin to be a significant protective effect on cardiac mitochondrial function against ISO-induced MI in rats.  相似文献   

7.
Dietary flavonoids intake has been reported inversely related to the incidence of cardiovascular diseases (CVD). The present study is undertaken to evaluate the preventive role of naringin on mitochondrial enzymes in isoproterenol (ISO)-induced myocardial infarction in male albino Wistar rats. Rats subcutaneously injected with ISO (85 mg/kg) at an interval of 24 h for 2 days, resulting in significant (p < 0.05) increase in the levels of mitochondrial lipid peroxides. ISO-induction also showed significant (p < 0.05) decrease in the activities of mitochondrial tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome c oxidase). Oral pretreatment with naringin (10, 20, and 40 mg/kg) to ISO-induced rats daily for a period of 56 days significantly (p < 0.05) minimized the alterations in all the biochemical parameters and restored the normal mitochondrial function. Transmission electron microscopic (TEM) observations also correlated with these biochemical findings. Thus, our findings demonstrate that naringin prevents the mitochondrial dysfunction during ISO-induced myocardial infarction in rats.  相似文献   

8.
The mechanisms responsible to the development of brain dysfunction during sepsis are not well understood. The objective of this study is to evaluate mitochondrial respiratory chain and creatine kinase activities in the brain after cecal ligation and perforation (CLP) in rats. We performed a prospective, controlled experiment in male Wistar rats. Rats were subjected to CLP (sepsis group) with saline resuscitation (at 50mL/kg immediately and 12h after cecal ligation and perforation) or sham operation (control group). Several times (0, 6, 12, 24, 48 and 96h) after CLP six rats were killed by decapitation, and brain structures (cerebellum, hippocampus, striatum and cortex) were isolated. Mitochondrial respiratory chain and creatine kinase activity were then measured. It was observed that animals submitted to CLP presented decreased mitochondrial respiratory chain activity in complex I, but not in complex II, III and IV, 24, 48 and 96h in all analyzed structures. Activity of succinate dehydrogenase was decreased in 48 and 96h in all analyzed structures. Creatine kinase activity increased after CLP in cerebellum, hippocampus and cortex (after 0h) and striatum (after 6h). Sepsis associated brain injury may include dysfunction in the mitochondrial respiratory chain activity.  相似文献   

9.
The long‐term use of tenofovir, a commonly used anti‐HIV drug, can result in renal damage. The mechanism of tenofovir disoproxil fumarate (TDF) nephrotoxicity is not clear, although it has been shown to target proximal tubular mitochondria. In the present study, the effects of chronic TDF treatment on the proximal tubular function, renal mitochondrial function, and the activities of the electron transport chain (ETC) complexes were studied in rats. Damage to proximal tubular mitochondria and proximal tubular dysfunction was observed. The impaired mitochondrial function such as the respiratory control ratio, 2‐(4,5‐dimethyl‐2‐thiazolyl)‐3,5‐diphenyl‐2H‐tetrazolium bromide (MTT) reduction, and mitochondrial swelling was observed. The activities of the electron chain complexes I, II, IV, and V were decreased by 46%, 20%, 26%, and 21%, respectively, in the TDF‐treated rat kidneys. It is suggested that TDF induced proximal tubular mitochondrial dysfunction and ETC defects may impair ATP production, resulting in proximal tubular damage and dysfunction.  相似文献   

10.
Females show lower incidences of several neurodegenerative diseases related to oxidative stress and mitochondrial dysfunction than males. In addition, female rats show more differentiated mitochondria than males in several tissues. The aim of this work was to investigate the existence of sex-dependent differences in brain mitochondrial bioenergetics and oxidative balance in aged rats. Results showed that aged female rat brain had a lower mitochondria content than aged male brain but with a greater differentiation degree given the higher mitochondrial protein content and mitochondrial complex activities in females. Female rat brain also showed a better oxidative balance than that of males, reflected by the fact that higher mitochondrial respiratory chain function is accompanied by a similar ROS production and greater antioxidant enzyme activities, which could be responsible for the lesser oxidative damage observed in proteins and lipids in this sex. Interestingly, levels of UCP4 and UCP5--proteins related to a decrease in ROS production--were also higher in females. In conclusion, aged female rat brain had more differentiated mitochondria than male brain and showed a better control of oxidative stress balance, which could be due, in part, to the neuroprotective effect of UCPs.  相似文献   

11.
Ulcerative colitis (UC) is a chronic inflammatory disease of the large bowel. Its pathogenesis remains unclear, but it appears to result from a deregulated immune response, with infiltration of leukocytes into the mucosal interstitium. Several studies link oxidative stress and mitochondrial dysfunction to the pathogenesis of UC. Thus, the aim of this study was to evaluate the activities of mitochondrial respiratory chain complexes in the colonic mucosal of UC patients. Colonic biopsies were obtained from UC patients (n = 13). The control specimens were taken from patients without any history of inflammatory bowel disease (n = 8). Colon mucosal was removed by colonoscopy and homogenized. Mitochondrial respiratory chain complexes activities were then measured. Our results showed that the activity of complex I was not altered in UC patients, when compared to the control group. On the other hand, complexes II, III, and IV were decreased around 50–60% in the colonic mucosal of UC patients. Based on the present findings, we hypothesize that mitochondrial dysfunction may play a role in pathogenesis of UC.  相似文献   

12.
Heart failure is associated with increased myocardial expression of TNF-alpha. However, the role of TNF-alpha in the development of heart failure is not fully understood. In the present study, we investigated the contribution of TNF-alpha to myocardial mitochondrial dysfunction, oxidative stress, and apoptosis in a unique dog model of heart failure characterized by an activation of all of these pathological processes. Male mongrel dogs were randomly assigned (n = 10 each) to 1) normal controls; 2) chronic pacing (250 beats/min for 4 wk) with concomitant administration of etanercept, a soluble p75 TNF receptor fusion protein, 0.5 mg/kg subcutaneously twice weekly; 3) chronic pacing with administration of saline vehicle. Mitochondrial function was assessed by left ventricular (LV) tissue mitochondrial respiratory enzyme activities. Oxidative stress was assessed with aldehyde levels, and apoptosis was quantified by photometric enzyme immunoassay for cytoplasmic histone-associated DNA fragments and terminal deoxynucleotide transferase-mediated nick-end labeling (TUNEL) assays. LV activity levels of mitochondrial respiratory chain enzyme complex III and V were reduced in the saline-treated dogs and restored either partially (complex III) or completely (complex V) in the etanercept-treated dogs. Aldehyde levels, DNA fragments, and TUNEL-positive cells were increased in the saline-treated dogs and normalized in etanercept-treated dogs. These changes were accompanied by an attenuation of LV dilatation and partial restoration of ejection fraction. Our data demonstrate that TNF-alpha contributes to progressive LV dysfunction in pacing-induced heart failure, mediated in part by a local impairment in mitochondrial function and increase in oxidative stress and myocyte apoptosis.  相似文献   

13.
Mechanical ventilation (MV) is a life-saving intervention used in patients with acute respiratory failure. Unfortunately, prolonged MV results in diaphragmatic weakness, which is an important contributor to the failure to wean patients from MV. Our laboratory has previously shown that reactive oxygen species (ROS) play a critical role in mediating diaphragmatic weakness after MV. However, the pathways responsible for MV-induced diaphragmatic ROS production remain unknown. These experiments tested the hypothesis that prolonged MV results in an increase in mitochondrial ROS release, mitochondrial oxidative damage, and mitochondrial dysfunction. To test this hypothesis, adult (3–4 months of age) female Sprague–Dawley rats were assigned to either a control or a 12-h MV group. After treatment, diaphragms were removed and mitochondria were isolated for subsequent respiratory and biochemical measurements. Compared to control, prolonged MV resulted in a lower respiratory control ratio in diaphragmatic mitochondria. Furthermore, diaphragmatic mitochondria from MV animals released higher rates of ROS in both State 3 and State 4 respiration. Prolonged MV was also associated with diaphragmatic mitochondrial oxidative damage as indicated by increased lipid peroxidation and protein oxidation. Finally, our data also reveal that the activities of the electron transport chain complexes II, III, and IV are depressed in mitochondria isolated from diaphragms of MV animals. In conclusion, these results are consistent with the concept that diaphragmatic inactivity promotes an increase in mitochondrial ROS emission, mitochondrial oxidative damage, and mitochondrial respiratory dysfunction.  相似文献   

14.
This study is to examine if Cu(2+) can act directly on mitochondria or indirectly by producing reactive oxygen species (ROS), isolated broiler hepatic mitochondria were exposed to different concentrations of Cu(2+) (10, 30, 50?μM). Respiratory chain complex activities, ROS generation, respiratory control ratio (RCR) and mitochondrial membrane potential were investigated. Dose-dependent inhibition of respiratory chain complexes and induction of ROS were observed, which coincided with decreasing RCR both with glutamate?+?malate or succinate. Further investigation indicated that the membrane potential determined by rhodamine 123 release decreased after CuCl(2) exposure at 30 and 50?μM. In addition, the effects of the antioxidants NAC (200?μM) and GSH (200?μM) were studied at 50?μM Cu(2+). The results indicate that Cu can induce mitochondrial dysfunction in excessive dose and the effect of Cu(2+) exposure on respiratory chain is not site-specific, and antioxidants can protect the mitochondrial function by reducing the formation of free radicals.  相似文献   

15.
Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.  相似文献   

16.
Use of norepinephrine to increase blood pressure in septic animals has been associated with increased efficiency of hepatic mitochondrial respiration. The aim of this study was to evaluate whether the same effect could be reproduced in isolated hepatic mitochondria after prolonged in vivo exposure to faecal peritonitis. Eighteen pigs were randomized to 27?h of faecal peritonitis and to a control condition (n?=?9 each group). At the end, hepatic mitochondria were isolated and incubated for one hour with either norepinephrine or placebo, with and without pretreatment with the specific receptor antagonists prazosin and yohimbine. Mitochondrial state 3 and state 4 respiration were measured for respiratory chain complexes I and II, and state 3 for complex IV using high-resolution respirometry, and respiratory control ratios were calculated. Additionally, skeletal muscle mitochondrial respiration was evaluated after incubation with norepinephrine and dobutamine with and without the respective antagonists (atenolol, propranolol and phentolamine for dobutamine). Faecal peritonitis was characterized by decreasing blood pressure and stroke volume, and maintained systemic oxygen consumption. Neither faecal peritonitis nor any of the drugs or drug combinations had measurable effects on hepatic or skeletal muscle mitochondrial respiration. Norepinephrine did not improve the efficiency of complex I- and complex II-dependent isolated hepatic mitochondrial respiration [respiratory control ratio (RCR) complex I: 5.6?±?5.3 (placebo) vs. 5.4?±?4.6 (norepinephrine) in controls and 2.7?±?2.1 (placebo) vs. 2.9?±?1.5 (norepinephrine) in septic animals; RCR complex II: 3.5?±?2.0 (placebo) vs. 3.5?±?1.8 (norepinephrine) in controls; 2.3?±?1.6 (placebo) vs. 2.2?±?1.1 (norepinephrine) in septic animals]. Prolonged faecal peritonitis did not affect either hepatic or skeletal muscle mitochondrial respiration. Subsequent incubation of isolated mitochondria with norepinephrine and dobutamine did not significantly influence their respiration.  相似文献   

17.
The MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is most commonly caused by the 3243A-->G mutation in mitochondrial DNA, resulting in impaired mitochondrial protein synthesis and decreased activities of the respiratory chain complexes. These defects may cause a reduced capacity for ATP synthesis and an increased rate of production of reactive oxygen species. Myoblasts cultured from controls and patients carrying the 3243A-->G mutation were used to measure ATP, ADP, catalase and superoxide dismutase, which was also measured from blood samples. ATP and ADP concentrations were decreased in myoblasts with the 3243A-->G mutation, but the ATP/ADP ratio remained constant, suggesting a decrease in the adenylate pool. The superoxide dismutase and catalase activities were higher than in control cells, and superoxide dismutase activity was slightly, but not significantly higher in the blood of patients with the mutation than in controls. We conclude that impairment of mitochondrial ATP production in myoblasts carrying the 3243A-->G mutation results in adenylate catabolism, causing a decrease in the total adenylate pool. The increase in superoxide dismutase and catalase activities could be an adaptive response to increased production of reactive oxygen species due to dysfunction of the mitochondrial respiratory chain.  相似文献   

18.
目的:研究局灶性脑缺血大鼠脑细胞超微结构及脑组织线粒体呼吸链功能的变化。方法:采用改良Zea Longa方法复制大鼠大脑中动脉缺血(MCAO)模型,透射电镜观察缺血后脑组织神经元超微结构的改变;检测呼吸链R3、R4、RCR、OPR等评价呼吸功能的指标。结果:局灶性脑缺血大鼠脑组织神经元细胞结构严重破坏;与对照组相比,脑缺血时大鼠脑线粒体ST3、RCR和OPR降低,ST4升高。结论:脑缺血急性期线粒体结构破坏,功能受损严重,随着时间延长均有所恢复;保护线粒体呼吸链可能对脑缺血损伤有保护作用。  相似文献   

19.
Generation of reactive oxygen species and mitochondrial dysfunction has been implicated in adriamycin induced cardiotoxicity. Mitochondrial dysfunction is characterized by the accumulation of oxidized lipids, proteins and DNA, leading to disorganization of mitochondrial structure and systolic failure. The present study was aimed to evaluate the efficacy of Centella asiatica on the mitochondrial enzymes; mitochondrial antioxidant status in adriamycin induced myocardial injury. Adriamycin (2.5 mg/kg body wt., i.p.) induced mitochondrial damage in rats was assessed in terms of decreased activities (p< 0.05) of cardiac marker enzymes (lactate dehydrogenase, creatine phosphokinase, amino transferases), TCA cycle enzymes (isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, respiratory marker enzymes (NADH-dehydrogenase, cytochrome-C-oxidase), mitochondrial antioxidant enzymes (GPx, GSH, SOD,CAT) and increased (p< 0.05) level of lipid peroxidation. Mitochondrial damage was confirmed by transmission electron microscopic examination. Pre-co-treatment with aqueous extract of Centella asiatica (200 mg/kg body wt, oral) effectively counteracted the alterations in mitochondrial enzymes and mitochondrial defense system. In addition, transmission electron microscopy study confirms the restoration of cellular normalcy and accredits the cytoprotective role of Centella asiatica against adriamycin induced myocardial injury. Our results demonstrated elevated oxidative stress and mitochondrial dysfunction in adriamycin treated rats. Moreover, on the basis of our findings it may be concluded that the aqueous extract of C. asiatica not only possesses antioxidant properties but it may also reduce the extent of mitochondrial damage  相似文献   

20.
Trastuzumab has an impressive level of efficacy as regards antineoplasticity, however it can cause serious cardiotoxic side effects manifested by impaired cardiac contractile function. Although several pharmacological interventions, including melatonin and metformin, have been reported to protect against various cardiovascular diseases, their potential roles in trastuzumab-induced cardiotoxicity remain elusive. We hypothesized that either melatonin or metformin co-treatment effectively attenuates trastuzumab-mediated cardiotoxicity through attenuating the impaired mitochondrial function and mitochondrial dynamics. Male Wistar rats were divided into control (normal saline, n = 8) and trastuzumab group (4 mg/kg/day for 7 days, n = 24). Rats in the trastuzumab group were subdivided into 3 interventional groups (n = 8/group), and normal saline, or melatonin (10 mg/kg/day), or metformin (250 mg/kg/day) were orally administered for 7 consecutive days. Cardiac parameters were determined, and biochemical investigations were carried out on blood and heart tissues. Trastuzumab induced left ventricular (LV) dysfunction by increasing oxidative stress, inflammation, and apoptosis. It also impaired cardiac mitochondrial function, dynamics, and autophagy. Treatment with either melatonin or metformin equally attenuated trastuzumab-induced cardiac injury, indicated by a marked reduction in inflammation, oxidative damage, cardiac mitochondrial injury, mitochondrial dynamic imbalance, autophagy dysregulation, and apoptosis, leading to improved LV function, as demonstrated by increased LV ejection fraction. Melatonin and metformin conferred equal levels of cardioprotection against trastuzumab-induced cardiotoxicity, which may provide novel and promising approaches for management of cardiotoxicity induced by trastuzumab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号