首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments using the alkaline comet assay, which measures all single-strand breaks regardless of their origin, were performed to evaluate the biological effectiveness of photons with different energies in causing these breaks. The aim was to measure human lymphocytes directly for DNA damage and subsequent repair kinetics induced by mammography 29 kV X rays relative to 220 kV X rays, 137Cs gamma rays and 60Co gamma rays. The level of DNA damage, predominantly due to single-strand breaks, was computed as the Olive tail moment or percentage DNA in the tail for different air kerma doses (0.5, 0.75, 1, 1.5, 2 and 3 Gy). Fifty cells were analyzed per slide with a semiautomatic imaging system. Data from five independent experiments were transformed to natural logarithms and fitted using a multiple linear regression analysis. Irradiations with the different photon energies were performed simultaneously for each experiment to minimize interexperimental variation. Blood from only one male and one female was used. The interexperimental variation and the influence of donor gender were negligible. In addition, repair kinetics and residual DNA damage after exposure to a dose of 3 Gy were evaluated in three independent experiments for different repair times (10, 20, 30 and 60 min). Data for the fraction of remaining damage were fitted to the simple function F(d) = A/(t + A), where F(d) is the fraction of remaining damage, t is the time allowed for repair, and A (the only fit parameter) is the repair half-time. It was found that the comet assay data did not indicate any difference in the initial radiation damage produced by 29 kV X rays relative to the reference radiation types, 220 kV X rays and the gamma rays of 137Cs and 60Co, either for the total dose range or in the low-dose range. These results are, with some restrictions, consistent with physical examinations and predictions concerning, for example, the assessment of the possible difference in effectiveness in causing strand breaks between mammography X rays and conventional (150-250 kV) X rays, indicating that differences in biological effects must arise through downstream processing of the damage.  相似文献   

2.
Survival based on colony formation was measured for starved plateau-phase Chinese hamster ovary (CHO) cells exposed to 250 kVp X rays at dose rates of 0.0031, 0.025, 0.18, 0.31, and 1.00 Gy/min. A large dose-rate effect was demonstrated. Delayed plating experiments and dose response experiments following a conditioning dose, both using a dose rate of 1.00 Gy/min and plating delays of up to 48 hr, were also used to investigate the alternative repair hypotheses. There is clearly a greater change in survival in dose-rate experiments than in the other experiments. Thus we believe that a process which depends on the square of the concentration of initial damage, and which alters the effect of initial damage on cell survival is being observed. We have applied the damage accumulation model to separate the single-event damage from this concentration-dependent form and estimate the repair rate for the latter type to be 70 min for our CHO cells. Use of this analysis on other published dose-rate studies also yields results consistent with this interpretation of the repair mechanisms.  相似文献   

3.
Human melanoma cells that are resistant to gamma rays were irradiated with 14 MeV neutrons given at low doses ranging from 5 cGy to 1.12 Gy at a very low dose rate of 0.8 mGy min(-1) or a moderate dose rate of 40 mGy min(-1). The biological effects of neutrons were studied by two different methods: a cell survival assay after a 14-day incubation and an analysis of chromosomal aberrations in metaphases collected 20 h after irradiation. Unusual features of the survival curve at very low dose rate were a marked increase in cell killing at 5 cGy followed by a plateau for survival from 10 to 32.5 cGy. The levels of induced chromosomal aberrations showed a similar increase for both dose rates at 7.5 cGy and the existence of a plateau at the very low dose rate from 15 to 30 cGy. The existence of a plateau suggests that a repair process after low-dose neutrons might be induced after a threshold dose of 5-7.5 cGy which compensates for induced damage from doses as high as 32.5 cGy. These findings may be of interest for understanding the relative biological effectiveness of neutrons and the effects of environmental low-dose irradiation.  相似文献   

4.
The induction and repair of DNA damage were studied by a DNA unwinding method in mouse L5178Y cells exposed to fast neutrons. DNA lesions induced by fast neutrons were classified into three types from their repair profiles: fast-reparable breaks (T1/2 = 3-5 min), slow-reparable breaks (T1/2 = 70 min), and nonreparable breaks. The repair rates of both fast-reparable and slow-reparable breaks were almost the same as those of corresponding damage induced by low-LET radiation. Neutrons induced a smaller amount of fast-reparable damage, an almost equal amount of slow-reparable damage, and a larger amount of nonreparable damage than those induced by equal doses of gamma rays or X rays. RBEs for fast- and slow-reparable damage were 0.3 and 0.9, respectively. The RBE for nonreparable damage was dose dependent and was 1.4 at the level of 100 breaks/10(12) Da DNA. Among the three types of lesions, only the nonreparable damage levels correlated with the linear-quadratic shape of the survival curves and with the enhanced killing effectiveness of neutrons (RBE = 1.7 at D0).  相似文献   

5.
After exposure to various doses of 250 kVp X radiation, 0.85 Me V fission spectrum neutrons, or 600 MeV/A iron (Fe) particles, mitotically quiescent rat lens cells showed no visible evidence of radiation injury. However, following the mitogenic stimulus of wounding, mitotic abnormalities became evident when responding cells entered mitosis. Latent damage and recovery therefrom were monitored at 3, 7, 14, and 28 days after irradiation. Following doses of 1 to 10 Gy of X radiation, the recovery rate, indicated by a decrease in abnormalities with time, was proportional to dose, and the dose-effect slope decreased exponentially with time. Virtually no recovery occurred during the 28 days after 1.25 to 2.25 Gy of fission neutron radiation. After doses of 0.5 to 3.0 Gy of Fe particles, an increased expression of mitotic damage or recovery than recovery occurred. As a consequence of the differing patterns in time for expression of damage or recovery following X rays and the high-LET radiations, the relative biological effectiveness (RBE) increased from 3.6 to 16 for neutrons and from 2 to 10 for Fe particles over the 28-day observation period.  相似文献   

6.
On Day 0, young adult female F344 rats were adrenalectomized and intrasplenically implanted with a pituitary gland and capsule containing estrone. All were thereafter given 2.5 mg deoxycorticosterone per week and the choice of saline or tap water. This treatment yields high prolactin levels and glucocorticoid deficiency (Prl+/Glc-). On Day +48, total recoverable mammary DNA was increased by more than sevenfold, tritiated thymidine uptake by nearly fourfold, and total mammary clonogens by about fivefold. Irradiation with 4, 40, and 80 cGy X rays on Day +48 increased total mammary carcinomas per rat day at risk linearly with dose, and 40 and 80 cGy significantly decreased first carcinoma latency. A dose of 40 cGy X rays on Day -1 yielded tumor latencies and frequencies insignificantly different from unirradiated controls and significantly different from the dose on Day +48. Total carcinomas per rat day at risk were better fit by a function of dose to the power 0.4 than by a linear function after exposure to 1, 10, and 20 cGy fission neutrons, and 10 and 20 cGy significantly shortened the time to appearance of the first cancer. In contrast to results with X rays, 10 cGy neutrons on Day -1 yielded tumor frequencies and latencies insignificantly different from 10 cGy neutrons on Day +48. The carcinogenic action of X rays was thus influenced by total clonogen numbers and/or proliferation rates; that of neutrons was not.  相似文献   

7.
Mammary tumour development was followed in two experiments involving a total of 2229 female Sprague-Dawley rats exposed to various doses of X or gamma rays at different dose rates. The data for another 462 rats exposed to tritiated water in one of these experiments were also analyzed. The incidence of adenocarcinomas and fibroadenomas at a given time after exposure increased linearly in proportion to total radiation dose for most groups. However, no significant increase in adenocarcinomas was observed with chronic gamma exposures up to 1.1 Gy, and the increase in fibroadenomas observed with chronic gamma exposures at a dose rate of 0.0076 Gy h-1 up to an accumulated dose of 3.3 Gy was small compared to that observed after acute exposures. The incidence of all mammary tumors increased almost linearly with the log of dose rate in the range 0.0076 to 26.3 Gy h-1 for 3 Gy total dose of gamma rays. The effects of X rays appeared to be less influenced by dose rate than were the effects of gamma rays.  相似文献   

8.
The induction of reciprocal translocation in rhesus monkey spermatogonial stem cells was studied following exposure to low doses of acute X rays (0.25 Gy, 300 mGy/min) or to low-dose-rate X rays (1 Gy, 2 mGy/min) and gamma rays (1 Gy, 0.2 mGy/min). The results obtained at 0.25 Gy of X rays fitted exactly the linear extrapolation down from the 0.5 and 1.0 Gy points obtained earlier. Extension of X-ray exposure reduced the yield of translocations similar to that in the mouse by about 50%. The reduction to 40% of translocation rate after chronic gamma exposure was clearly less than the value of about 80% reported for the mouse over the same range of dose rates. Differential cell killing with ensuing differential elimination of aberration-carrying cells is the most likely explanation for the differences between mouse and monkey.  相似文献   

9.
Prolonged exposures to misonidazole (MISO) in vitro under hypoxic conditions result in radiosensitization which is characterized by a decrease in the size of the radiation survival curve shoulder for cells irradiated under hypoxic or aerobic conditions after drug removal. Although intracellular glutathione (GSH) was depleted during hypoxic exposures to MISO, this could not account for the dose-additive radiosensitization (decrease in shoulder size) since GSH depletion by diethylmaleate had no effect on the sensitivity of cells irradiated in air. The alkaline elution assay was used to measure DNA strand breaks and their repair after exposure to MISO, graded doses of X rays, and the combination of MISO pretreatment with X rays. The elution rate of DNA from irradiated cells increased linearly with X-ray dose, with and without MISO pretreatment. However, the DNA elution rates measured after MISO pretreatment were greater by a constant amount at all X-ray doses greater than 1 Gy. In terms of both cell survival and DNA elution rate, MISO-pretreated cells behaved as though they had received an extra 1.5 Gy. Although the initial damage after X rays was greater in MISO-pretreated cells, there was no effect of MISO pretreatment on the rate of repair of radiation-induced DNA strand breaks. The agreement between the differences in survival levels and DNA elution rates for irradiated control and MISO-pretreated cells and absence of an effect on DNA repair rates suggest that the pretreatment sensitization is due to an additive interaction of damage at the DNA level.  相似文献   

10.
Results are reported of studies to measure the extent of recovery of potentially lethal damage (PLD) in rat rhabdomyosarcoma tumor cells after irradiation both in vivo and in vitro with either high-LET or low-LET radiation. Stationary-phase cultures were found to exhibit repair of PLD following irradiation in vitro either with low-LET X rays or with high-LET neon ions in the extended-peak ionization region. Following a 9-Gy dose of 225-kVp X rays or a 3.5-Gy dose of peak neon ions, both of which reduced the initial cell survival to 6-8%, the maximum PLD recovery factors were 3.4 and 1.6, respectively. In contrast, the standard tumor excision assay procedure failed to reveal any recovery from PLD in tumors irradiated in situ with either X rays or peak neon ions. PLD repair by the in vivo tumor cells could be observed, however, when the excision assay procedure was altered by the addition of a known PLD repair inhibitor beta-arabinofuranosyladenine (beta-ara-A). When a noncytotoxic 50 microM concentration of beta-ara-A was added to the excised tumor cells immediately following a 14.5-Gy in situ dose of X rays, cell survival in the inhibitor-treated cells was lower than in the untreated cells (0.018 compared to 0.056), resulting in a PLD repair inhibition factor of 3.1. Delaying the addition of beta-ara-A for 1, 2, or 3 h following tumor excision reduced the PLD repair inhibition factor to 1.6, 1.5, and 0.9, respectively. Following tumor irradiation in situ with neon ions in the extended-peak ionization region (median LET = 145 keV/micron), less PLD repair was observed than after X irradiation. For 5.8 Gy of peak neon ions, the PLD repair inhibition factors were 2.1, 1.5, 1.3, and 1.1 at 0, 1, 2, and 3 h, respectively. We interpret the absence of measurable PLD repair using the standard tumor excision assay procedure as resulting from undetectable repair occurring during the long interval (about 2 h) required for the cell dissociation and plating procedures. We conclude that at least for our tumor system, PLD repair does occur after irradiation of tumors in situ, even though it is not detectable using the standard tumor excision assay procedure. Thus a failure to measure such repair by this assay in a given tumor system does not necessarily mean the cells are incapable of PLD repair.  相似文献   

11.
12.
HeLa S3 cells were sensitized to the lethal action of 220-kV X rays by partially replacing the thymidine in their DNA with 5-bromodeoxyuridine (BrdU). To examine the expression of and recovery from potentially lethal radiation damage (PLD), both BrdU-grown and control cells were treated with 4 mM caffeine for increasing times up to 2 days, either immediately after irradiation or after increasing delays up to 28 h. When the same dose of X rays (3 Gy) was applied to BrdU-grown and control cells, the difference in survival that is found in the absence of caffeine disappeared after about 30 h of incubation in its presence; when isosurvival doses were applied (BrdU-grown cells, 2.5 Gy; control cells, 4 Gy), the control cells suffered more killing. When treatment with caffeine was delayed for progressively longer times after both groups of cells received 3 Gy, the control cells achieved a higher level of survival. These results indicate that the increased radiation sensitivity of cells containing BrdU derives from a decreased ability to repair PLD.  相似文献   

13.
The Comet assay (microgel electrophoresis) was used to study DNA damage in Raji cells, a B-lymphoblastoid cell line, after treatment with different doses of neutrons (0.5 to 16 Gy) or gamma rays (1.4 to 44.8 Gy). A better growth recovery was observed in cells after gamma-ray treatments compared with neutron treatments. The relative biological effectiveness (RBE) of neutron in cell killing was determined to be 2.5. Initially, the number of damaged cells per unit dose was approximately the same after neutron and gamma-ray irradiation. One hour after treatment, however, the number of normal cells per unit dose was much lower for neutrons than for gamma rays, suggesting a more efficient initial repair for gamma rays. Twenty-four hours after treatment, the numbers of damaged cells per unit dose of neutrons or gamma rays were again at comparable level. Cell cycle kinetic studies showed a strong G2/M arrest at equivalent unit dose (neutrons up to 8 Gy; gamma rays up to 5.6 Gy), suggesting a period in cell cycle for DNA repair. However, only cells treated with low doses (up to 2 Gy) seemed to be capable of returning into normal cell cycle within 4 days. For the highest dose of neutrons, decline in the number of normal cells seen at already 3 days after treatment was deeper compared with equivalent unit doses of gamma rays. Our present results support different mechanisms of action by these two irradiations and suggest the generation of locally multiply damaged sites (LMDS) for high linear energy transfer (LET) radiation which are known to be repaired at lower efficiency.  相似文献   

14.
Experiments were designed to examine the effects of radiation quality on specific gene expression within the first 3 h following radiation exposure in Syrian hamster embryo (SHE) cells. Preliminary work demonstrated the induction of c-fos and alpha-interferon genes following exposure to low-linear-energy-transfer (low-LET) radiations (X rays or gamma rays). More detailed experiments revealed induction of c-fos mRNA within the first 3 h following exposure to either X rays (75 cGy) or gamma rays (90 cGy). We could not detect induction of c-fos following exposure of SHE cells to fission-spectrum neutrons (high-LET) from the JANUS reactor administered at either high (12 cGy/min) or low (0.5 cGy/min) dose rates. Expression of alpha-interferon mRNA was similarly induced by low-LET radiations but only modestly by JANUS neutrons. The induction by gamma rays was dose-dependent, while induction by neutrons was specific for low doses and low dose rates. These experiments demonstrate the differential gene inductive response of cells following exposure to high- and low-LET radiations. These experiments suggest that these different qualities of ionizing radiation may have different mechanisms for inducing many of the cellular consequences of radiation exposure, such as cell survival and cell transformation.  相似文献   

15.
The influence of 3-aminobenzamide (3-AB) on the radiation response of the stem spermatogonia of the CBA mouse has been investigated. Doses of 3-AB from 66 to 450 mg/kg, administered 1 h before irradiation, significantly enhanced stem-cell killing. Enhancement was observed when 3-AB (450 mg/kg) was given up to 5 h before, but not if administered after, irradiation. When radiation was delivered at a lower dose rate (5 cGy/min compared to 180 cGy/min) significant dose sparing was achieved for radiation alone. Pretreatment with 3-AB resulted in slightly less enhancement at the low dose rate than at the high. Split-dose studies (9 Gy total dose) with radiation alone resulted in a recovery ratio of 1.4-1.5. Administration of 3-AB before the first dose resulted in a similar recovery ratio, but if given immediately after the first dose the ratio was smaller. Pretreatment of mice with the radiosensitizer RSU-1069 indicated that at least some of the stem cells were radiobiologically hypoxic. We suggest therefore that the enhancement of spermatogonial stem-cell killing by 3-AB is not entirely due to inhibition of repair processes but may also involve modification of the oxygen status of the testis.  相似文献   

16.
Solar particle events (SPEs) present a major radiation-related risk for manned exploratory missions in deep space. Within a short period the astronauts may absorb doses that engender acute effects, in addition to the risk of late effects, such as the induction of cancer. Using primary human cells, we studied clonogenic survival and the induction of neoplastic transformation after exposure to a worst case scenario SPE. We simulated such an SPE with monoenergetic protons (50, 100, 1000 MeV) delivered at a dose rate of 1.65 cGy min?1 in a dose range from 0 to 3 Gy. For comparison, we exposed the cells to a high dose rate of 33.3 cGy min?1. X rays (100 kVp, 8 mA, 1.7 mm Al filter) were used as a reference radiation. Overall, we observed a significant sparing effect of the SPE dose rate on cell survival. High-dose-rate protons were also more efficient in induction of transformation in the dose range below 30 cGy. However, as dose accumulated at high dose rate, the transformation levels declined, while at the SPE dose rate, the number of transformants continued to increase up to about 1 Gy. These findings suggest that considering dose-rate effects may be important in evaluating the biological effects of exposure to space radiation. Our analyses of the data based on particle fluence showed that lethality and transforming potential per particle clearly increased with increasing linear energy transfer (LET) and thus with the decreasing energy of protons. Further, we found that the biological response was determined not only by LET but also type of radiation, e.g. particles and photons. This suggests that using γ or X rays may not be ideal for assessing risk associated with SPE exposures.  相似文献   

17.
Extension of previous investigations at this laboratory regarding life shortening and tumor induction in the mouse has provided more complete dose-response information in the low dose region of X rays and neutrons. A complete observation of survival and late pathology has been carried out on over 2000 BC3F1 female mice irradiated with single doses of 1.5 MeV neutrons (0.5, 1, 2, 4, 8, 16 cGy) and, for comparison, of X rays (4, 8, 16, 32, 64, 128, 256 cGy). Data analysis has shown that a significant life shortening is observable only for individual neutron doses not lower than 8 cGy. Nevertheless, assuming a linear nonthreshold form for the overall dose-effect relationships of both radiation qualities, an RBE value of 12.3 is obtained for the 1.5 MeV neutrons. The induction of solid tumors by neutrons becomes statistically significant at individual doses from 8 cGy and by X rays for doses larger than 1 Gy. Linear dependence on neutron dose appears adequate to interpret the data at low doses. A separate analysis of ovarian tumor induction substantiates the hypothesis of a threshold dose for the X rays, while this is not strictly needed to interpret the neutron data. A trend analysis conducted on the neoplasm incidence confirms the above findings. Death rates have been analyzed, and a general agreement between the shift to earlier times of these curves and tumor induction was found.  相似文献   

18.
The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.  相似文献   

19.
The growth parameters and radiosensitivity of normal rat intestinal epithelial cells, IEC-17, were studied. The cells were cultured by standard methods and exposed to an array of doses (1-12 Gy) of 250 kVp X rays. The survival curves generated exhibited no initial shoulder and were bimodal. The Do of the first component was about 0.2 Gy and the second component. 5.0 Gy. The ability of this cell line to repair sublethal lesions was examined by fractionation studies; repair was completed within 60 min after the first dose. When Chinese hamster ovary (CHO) cells were grown under the same conditions used for the IEC-17 cells and then irradiated with single doses, a typical survival curve with a Do of 1.4 Gy was obtained. The survival curves obtained for the IEC-17 cell line are consistent with the response of a morphologically distinct single population containing two functionally separate types of cells.  相似文献   

20.
Spheroids grown from the human cell line EF8 of a lung metastasis of a human malignant fibrous histiocytoma were given fractionated irradiation with 60Co gamma rays at passages 31 and 32. The mean diameter of the spheroids at the time of treatment was 250 microns. Growth delay was used as the end point in these studies. Two experiments were carried out to determine the capacity and kinetics of repair of sublethal damage. In the first experiment, one, two, and five fractions were given at three or four dose levels with fixed intervals of 360 min. In the second experiment, schedules with two and four dose fractions and intervals of 0, 20, 60, 120, and 360 min were used, each at two dose levels. Data analysis was performed by a direct method based on the alpha/beta model and first-order repair kinetics of radiation damage. In both experiments, the alpha/beta value of EF8 spheroids was estimated to be about 8 (6-10) Gy. The rate constant of repair, mu, and its 95% confidence interval were estimated to be 0.62 (0.40-0.84) 10(-2) min-1, equivalent to a half-time of repair (T1/2) of 112 (83-172) min. A more detailed analysis of the data of the second experiment revealed a significant dependence of the rate constant of repair, mu, on the total radiation effect induced by the fractionated radiation treatments with short overall times. With increasing level of effect, mu decreased. These data indicate that the half-time of recovery of a human tumor can be longer than that of the surrounding normal tissue, in this case lung, at least for a limited range of doses and for some fractionation schedules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号