首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The absorption changes of two merocyanine dyes in response to membrane potential changes were measured on several nueronal preparations to see whether the dyes would be useful in recording from these cells.We were able to record large signals without averaging from barnacle and leech neurons. The greatest signal with WW375 was seen at 750 nm. Much smaller increases in transmitted light intensity were seen at all other wavelengths between 500 and 780 nm. In contrast, vertebrate neuronal preparations produced much smaller signals with an entirely different action spectrum. Essentially the same spectrum was seen in cells of the sympathetic ganglion of the bullfrog,Rana catesbiana, dissociated chick spinal cord neurons, or dissociated rat superior cervical ganglion neurons. In each case an action potential was accompanied by increases in transmitted light intensity between 500 and 600 nm and 730 and 780 nm, and decreases in intensity between 600 and 730 nm with the dye WW375, the best dye tested. Similar results were obtained with dye NK2367 on both vertebrate and invertebrate preparations, except that the spectral properties were shifted 30 nm towards the blue. Both dyes caused some photodynamic damage to the cultured neurons after a few minute's exposure to the illuminating light. Several analogues of these dyes were also tried, but did not produce larger signals.  相似文献   

2.
Voltage-sensitive fluorescent dyes are commonly used to measure cardiac electrical activity. Recent studies indicate, however, that optical action potentials (OAPs) recorded from the myocardial surface originate from a widely distributed volume beneath the surface and may contain useful information regarding intramural activation. The first step toward obtaining this information is to predict OAPs from known patterns of three-dimensional (3-D) electrical activity. To achieve this goal, we developed a two-stage model in which the output of a 3-D ionic model of electrical excitation serves as the input to an optical model of light scattering and absorption inside heart tissue. The two-stage model permits unique optical signatures to be obtained for given 3-D patterns of electrical activity for direct comparison with experimental data, thus yielding information about intramural electrical activity. To illustrate applications of the model, we simulated surface fluorescence signals produced by 3-D electrical activity during epicardial and endocardial pacing. We discovered that OAP upstroke morphology was highly sensitive to the transmural component of wave front velocity and could be used to predict wave front orientation with respect to the surface. These findings demonstrate the potential of the model for obtaining useful 3-D information about intramural propagation.  相似文献   

3.
The distribution of patterns of activity in different brain structures has been related to the encoding and processing of sensory information. Consequently, it is important to be able to image the distribution of these patterns to understand basic brain functions. The spatial resolution of voltage-sensitive dye (VSD) methods has recently been enhanced considerably by the use of video imaging techniques. The main factor that now hampers the resolution of VSD patterns is the inherent limitation of the optical systems. Unfortunately, the intrinsic characteristics of VSD images impose important limitations that restrict the use of general deconvolution techniques. To overcomes this problem, in this study an image restoration procedure has been implemented that takes into consideration the limiting characteristics of VSD signals. This technique is based on applying a set of imaging processing steps. First, the signal-to-noise (S/N) ratio of the images was improved to avoid an increase in the noise levels during the deconvolution procedures. For this purpose, a new filter technique was implemented that yielded better results than other methods currently used in optical imaging. Second, focal plane images were deconvolved using a modification of the well-known nearest-neighbor deconvolution algorithm. But to reduce the light exposure of the preparation and simplify image acquisition procedures, adjacent image planes were modeled according to the in-focus image planes and the empirical point spread function (PSF) profiles. Third, resulting focal plane responses were processed to reduce the contribution of optical responses that originate in distant image planes. This method was found to be satisfactory under simulated and real experimental conditions. By comparing the restored and unprocessed images, it was clearly demonstrated that this method can effectively remove the out-of-focus artifacts and produce focal plane images of better quality. Evaluations of the tissue optical properties allowed assessment of the maximum practical optical section thickness using this deconvolution technique in the optical system tested. Determination of the three-dimensional PSF permitted the correct application of deconvolution algorithms and the removal of the contaminating light arising from adjacent as well as distant optical planes. The implementation of this deconvolution approach in salamander olfactory bulb allowed the detailed study of the laminar distribution of voltage-sensitive changes across the bulb layer. It is concluded that (1) this deconvolution procedure is well suited to deconvolved low-contrast images and offers important advantages over other alternatives; (2) this method can be properly used only when the tissue optical properties are first determined; (3) high levels of light scattering in the tissue reduce the optical section capabilities of this technique as well as other deconvolution procedures; and (4) use of the highest numerical aperture in the objectives is advisable because this improves not only the light-collecting efficiency to detect poor-contrast images, but also the spatial frequency differences between adjacent image planes. Under this condition it is possible to overcome some of the limitations imposed by the light scattering/birefringence of the tissue.  相似文献   

4.
Wu J  Zeng Y  Huang J  Hou W  Zhu J  Wu R 《Genetical research》2007,89(1):27-38
Whether there are different genes involved in response to different environmental signals and how these genes interact to determine the final expression of the trait are of fundamental importance in agricultural and biological research. We present a statistical framework for mapping environment-induced genes (or quantitative trait loci, QTLs) of major effects on the expression of a trait that respond to changing environments. This framework is constructed with a maximum-likelihood-based mixture model, in which the mean and covariance structure of environment-induced responses is modelled. The means for responses to continuous environmental states, referred to as reaction norms, are approximated for different QTL genotypes by mathematical equations that were derived from fundamental biological principles or based on statistical goodness-of-fit to observational data. The residual covariance between different environmental states was modelled by autoregressive processes. Such an approach to studying the genetic control of reaction norms can be expected to be advantageous over traditional mapping approaches in which no biological principles and statistical structures are considered. We demonstrate the analytical procedure and power of this approach by modelling the photosynthetic rate process as a function of temperature and light irradiance. Our approach allows for testing how a QTL affects the reaction norm of photosynthetic rate to a specific environment and whether there exist different QTLs to mediate photosynthetic responses to temperature and light irradiance, respectively.  相似文献   

5.
6.
Optical imaging of intrinsic signals is widely used for high-resolution brain mapping in various animal species. A new approach using continuous data acquisition and Fourier decomposition of the signal allows for much faster mapping, opening up the possibility of applying this method to new experimental questions.  相似文献   

7.
Modern comparative genomics has been established, in part, by the sequencing and annotation of a broad range of microbial species. To gain further insights, new sequencing efforts are now dealing with the variety of strains or isolates that gives a species definition and range; however, this number vastly outstrips our ability to sequence them. Given the availability of a large number of microbial species, new whole genome approaches must be developed to fully leverage this information at the level of strain diversity that maximize discovery. Here, we describe how optical mapping, a single-molecule system, was used to identify and annotate chromosomal alterations between bacterial strains represented by several species. Since whole-genome optical maps are ordered restriction maps, sequenced strains of Shigella flexneri serotype 2a (2457T and 301), Yersinia pestis (CO 92 and KIM), and Escherichia coli were aligned as maps to identify regions of homology and to further characterize them as possible insertions, deletions, inversions, or translocations. Importantly, an unsequenced Shigella flexneri strain (serotype Y strain AMC[328Y]) was optically mapped and aligned with two sequenced ones to reveal one novel locus implicated in serotype conversion and several other loci containing insertion sequence elements or phage-related gene insertions. Our results suggest that genomic rearrangements and chromosomal breakpoints are readily identified and annotated against a prototypic sequenced strain by using the tools of optical mapping.  相似文献   

8.

Background  

Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task.  相似文献   

9.
During ventricular fibrillation (VF), electrical activation waves are fragmented, and the heart cannot contract in synchrony. It has been proposed that VF waves emanate from stable periodic sources (often called "mother rotors"). The objective of the present study was to determine if stable rotors are consistently present on the epicardial surface of hearts comparable in size to human hearts. Using new optical mapping technology, we imaged VF from nearly the entire ventricular surface of six isolated swine hearts. Using newly developed pattern analysis algorithms, we identified and tracked VF wave fronts and phase singularities (PS; the pivot point of a reentrant wave front). We introduce the notion of a compound rotor in which the rotor's central PS can change and describe an algorithm for automatically identifying such patterns. This prevents rotor lifetimes from being inappropriately abbreviated by wave front fragmentation and collision events near the PS. We found that stable epicardial rotors were not consistently present during VF: only 1 of 17 VF episodes contained a compound rotor that lasted for the entire mapped interval of 4 s. However, shorter-lived rotors were common; 12.2 (SD 3.3) compound rotors with lifetime >200 ms were visible on the epicardium at any given instant. We conclude that epicardial mother rotors do not drive VF in this experimental model; if mother rotors do exist, they are intramural or septal. This paucity of persistent rotors suggests that individual rotors will eventually terminate by themselves and therefore that the continual formation of new rotors is critical for VF maintenance.  相似文献   

10.
Neuropsychiatric disorders, which arise from a combination of genetic, epigenetic and environmental influences, epitomize the challenges faced in understanding the mammalian brain. Elucidation and treatment of these diseases will benefit from understanding how specific brain cell types are interconnected and signal in neural circuits. Newly developed neuroengineering tools based on two microbial opsins, channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), enable the investigation of neural circuit function with cell-type-specific, temporally accurate and reversible neuromodulation. These tools could lead to the development of precise neuromodulation technologies for animal models of disease and clinical neuropsychiatry.  相似文献   

11.
The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.  相似文献   

12.
Rhodospirillum rubrum is a phototrophic purple nonsulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems and as a source of hydrogen and biodegradable plastic production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction endonuclease maps (XbaI, NheI, and HindIII) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction endonuclease maps from randomly sheared genomic DNA molecules extracted from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the HindIII map acted as a scaffold for high-resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and confirmation of genome sequence, this work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a "molecular cytogenetics" approach to solving problems in genomic analysis.  相似文献   

13.
A method for the separation of semiperiodic (Gaussian probability distribution of intervals with moderate coefficient of variation) superimposed point processes, to be implemented on a digital computer is described. The efficiency of the filter used for the extraction of the underlying event sequences from the pooled array has been investigated by simulation. Approximately 80 percent of the events belonging to the underlying sequence to be extracted were recovered (with the addition of "impurity events"), still preserving the mean rate and coefficient of variation of the original indicidual sequence concerned. The program was used on an example of an actual electromyographic recording (comprised of a number of motor units discharging simultaneously), resolving the number of motor units involved, their mean rates, and the coefficient of variation of the individual action potential sequences.  相似文献   

14.
A new approach to optically transduce antigen-antibody association, needing no label, is described herein, taking advantage of the ability of reflection-absorption infrared (IR) spectroscopy to analyze organic thin films at the surface of reflective materials with high sensitivity. As a proof-of-principle, this new technique was applied to the immunodetection of the herbicide atrazine. Gold-coated chips were covered with a capture layer consisting of a protein derivative of the herbicide atrazine covalently bound to a self-assembled monolayer containing a carboxy-terminated thiolate. Successive binding of anti-atrazine antibody and secondary anti-rabbit immunoglobulin G antibody resulted in a change of the IR absorption properties of the organic film at the sensor surface. The two prominent amide I and II bands observed on the surface IR spectra were taken for semiquantitative analysis of the adsorbed protein amount. The presence of increasing amounts of atrazine resulted in the progressive inhibition of antibodies binding to the sensors, yielding a relative lower increase of the IR signals. The deduced standard curves displayed a sigmoidal shape typical of competitive inhibition assays. The test midpoint (IC(50)) and the limit of detection (IC(80)) were found to be in the nanomolar range and very close to those measured by an in-house enzyme-linked immunosorbent assay using the same antibody and the same antigen competitor.  相似文献   

15.
The polymerase chain reaction (PCR) is the most widely used technique for the study of DNA. Applications for PCR have been extended significantly by the development of "long" PCR, a technique that makes it possible to amplify DNA fragments up to 40 kb in length. This article describes two novel applications of the long PCR technique, one which simplifies restriction mapping and another which enhances amplification specificity and yield. The same primers used to perform the long PCR amplification can be used as probes to perform restriction mapping of the DNA fragment amplified. Restriction digestion performed prior to long PCR amplification can be used to selectively suppress the amplification of members of families of closely related DNA sequences, thereby making it possible to selectively amplify one of a group of highly homologous sequences. These two complimentary techniques, both involving use of the long PCR paired with restriction digestion, have potential application in any laboratory in which PCR is performed.  相似文献   

16.
An imaging system for di-4-ANEPPS (4-[beta-[2-(di-n-butylamino)-6-naphthylvinyl]pyridinium]) voltage-sensitive dye recordings has been adapted for recording from an in vitro mouse heart preparation that consists of both atria in isolation. This approach has been used to study inter- and intra-atrial activation and conduction and to monitor action potential durations (APDs) in the left and right atrium. The findings from this study confirm some of our previous findings in isolated mouse atrial myocytes and demonstrate that many electrophysiological properties of mouse atria closely resemble those of larger mammals. Specifically, we made the following observations: 1) Activation in mouse atria originates in the sinoatrial node and spreads into the right atrium and, after a delay, into the left atrium. 2) APD in the left atrium is shorter than in the right atrium. 3) Sites in the posterior walls have longer APDs than sites in the atrial appendages. 4) Superfusion of this preparation with 4-aminopyridine and tetraethylammonium resulted in increases in APD, consistent with their inhibitory effects on the K+ currents known to be expressed in mouse atria. 5) The muscarinic agonist carbachol shortened APD in all areas of the preparation, except the left atrial appendage, in which carbachol had no statistically significant effect on APD. These results validate a new approach for monitoring activation, conduction, and repolarization in mouse atria and demonstrate that the physiological and pharmacological properties of mouse atria are sufficiently similar to those of larger animals to warrant further studies using this preparation.  相似文献   

17.
Stimulation with odours has been shown to elicit characteristic patterns of activated glomeruli in the antennal lobe (AL) of honeybees. In this study we show that these patterns are dynamic in a time window of 2-3 s after stimulus onset. We measured changes in the averaged membrane potential of all cells in the glomerular neuropil by optical imaging of the voltage-sensitive dye RH795 using a slow scan CCD camera (3 frames/s). The four substances 1-hexanol, hexanal, citral and clove-oil as well as the binary mixtures hexanol+hexanal and hexanol+citral were used as stimuli (2 s stimulus duration). We found that: (1) every odour elicited an odour-specific activity pattern, and conversely every glomerulus had a characteristic odour response profile; (2) some glomeruli had a tonic, some a phasic-tonic, and some a slow phasic response pattern; (3) the difference between the glomerular response patterns increased within 2 s of stimulus presentation, which suggests that odour representations became more characteristic over stimulus time; and (4) the responses to odorant mixtures were complex and glomerulus-dependent: some responses correspond to the sum of the compounds' responses, some to the response of one of the components.  相似文献   

18.
Bone form reflects both the genetic profile and behavioural history of an individual. As cortical bone is able to remodel in response to mechanical stimuli, interspecific differences in cortical bone thickness may relate to loading during locomotion or manual behaviours during object manipulation. Here, we test the application of a novel method of cortical bone mapping to the third metacarpal (Mc3) and talus of Pan, Pongo, and Homo. This method of analysis allows measurement of cortical thickness throughout the bone, and as such is applicable to elements with complex morphology. In addition, it allows for registration of each specimen to a canonical surface, and identifies regions where cortical thickness differs significantly between groups. Cortical bone mapping has potential for application to palaeoanthropological studies; however, due to the complexity of correctly registering homologous regions across varied morphology, further methodological development would be advantageous.  相似文献   

19.
Bloodgood BL  Sabatini BL 《Neuron》2007,53(2):249-260
The roles of voltage-sensitive sodium (Na) and calcium (Ca) channels located on dendrites and spines in regulating synaptic signals are largely unknown. Here we use 2-photon glutamate uncaging to stimulate individual spines while monitoring uncaging-evoked excitatory postsynaptic potentials (uEPSPs) and Ca transients. We find that, in CA1 pyramidal neurons in acute mouse hippocampal slices, CaV(2.3) voltage-sensitive Ca channels (VSCCs) are found selectively on spines and act locally to dampen uncaging-evoked Ca transients and somatic potentials. These effects are mediated by a regulatory loop that requires opening of CaV(2.3) channels, voltage-gated Na channels, small conductance Ca-activated potassium (SK) channels, and NMDA receptors. Ca influx through CaV(2.3) VSCCs selectively activates SK channels, revealing the presence of functional Ca microdomains within the spine. Our results suggest that synaptic strength can be modulated by mechanisms that regulate voltage-gated conductances within the spine but do not alter the properties or numbers of synaptic glutamate receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号