首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
C. Pisano  S. Bonaccorsi    M. Gatti 《Genetics》1993,133(3):569-579
Primary spermatocyte nuclei of Drosophila melanogaster exhibit three giant lampbrush-like loops formed by the kl-5, kl-3 and ks-1 Y-chromosome fertility factors. These structures contain and abundantly transcribe highly repetitive, simple sequence DNAs and accumulate large amounts of non-Y-encoded proteins. By immunizing mice with the 53-kD fraction (enriched in β(2)-tubulin) excised from a sodium dodecyl sulfate-polyacrylamide gel loaded with Drosophila testis proteins we raised a polyclonal antibody, designated as T53-1, which decorates the kl-3 loop and the sperm flagellum. Two dimensional immunoblot analysis showed that the T53-1 antibody reacts with a single protein of about 53 kD, different from the tubulins and present both in X/Y and X/O males. Moreover, the antigen recognized by the T53-1 antibody proved to be testis-specific because it was detected in testes and seminal vesicles but not in other male tissues or in females. The characteristics of the protein recognized by the T53-1 antibody suggested that it might be a member of a class of axonemal proteins, the tektins, known to form Sarkosyl-urea insoluble filaments in the wall of flagellar microtubules. Purification of the Sarkosyl-urea insoluble fraction of D. melanogaster sperm revealed that it contains four polypeptides having molecular masses ranging from 51 to 57 kD. One of these polypeptides reacts strongly with the T53-1 antibody but none of them reacts with antitubulin antibodies. These results indicate that the kl-3 loop binds a non-Y encoded, testis-specific, tektin-like protein which is a constituent of the sperm flagellum. This finding supports the hypothesis that the Y loops fulfill a protein-binding function required for the proper assembly of the axoneme components.  相似文献   

3.
Y Chromosome Loops in Drosophila Melanogaster   总被引:7,自引:2,他引:5       下载免费PDF全文
S. Bonaccorsi  C. Pisano  F. Puoti    M. Gatti 《Genetics》1988,120(4):1015-1034
Primary spermatocyte nuclei of fixed testes of Drosophila melanogaster exhibit three large clusters of thread-like structures, each consisting of two long, continuous, loop-shaped filaments. No comparable intranuclear structures are observed in spermatogonia, secondary spermatocytes or spermatids. The threads begin to form in young spermatocytes, grow throughout spermatocyte development, reach their maximum size in mature spermatocytes and disintegrate prior to meiotic metaphase I. The presence of each cluster of threads depends upon the presence of a specific region of the Y chromosome; when this region is deleted the cluster is absent, and when it is duplicated the cluster is also duplicated. Together these observations strongly suggest that these structures represent giant Y chromosome lampbrush-like loops analogous to those described in Drosophila hydei. Two antibodies, one polyclonal and one monoclonal, differentially react with the three loops of D. melanogaster. Moreover, two of these loops are specifically stained by Giemsa at pH 10. By indirect immunofluorescence with these antibodies followed by Giemsa staining, each loop can be unambiguously identified and its presence and normality readily assessed. This enabled us to perform fine mapping experiments to determine the relationships between the Y chromosome fertility factors and the loops. The loop-forming sites map within the kl-5, kl-3 and ks-1 fertility factors. Regions h3 and h21 of the Y chromosome correspond to the loop-forming sites of kl-5 and ks-1, respectively. Each of these regions contains about 1300 kb of DNA and spans about one-third of its locus. The loop-forming site of the kl-3 locus is coextensive with region h7-h9 which contains about 4300 kb of DNA and corresponds to the minimum physical size of this locus. These data suggest that each loop is an integral part of a different fertility factor, representing the cytological manifestation of its activity in primary spermatocytes. The kl-2, kl-1 and ks-2 fertility regions do not produce any visible intranuclear structure and do not affect the kl-5, kl-3 and ks-1 loops. Thus, these loci may either not form loops at all or produce loop-like structures that we are unable to see because they are physically minute, destroyed by our fixation procedure, or both.  相似文献   

4.
5.
6.
7.
Myosin VI, a ubiquitously expressed unconventional myosin, has roles in a broad array of biological processes. Unusual for this motor family, myosin VI moves toward the minus (pointed) end of actin filaments. Myosin VI has two light chain binding sites that can both bind calmodulin (CaM). However unconventional myosins could use tissue-specific light chains to modify their activity. In the Drosophila testis, myosin VI is important for maintenance of moving actin structures, called actin cones, which mediate spermatid individualization. A CaM-related protein, Androcam (Acam), is abundantly expressed in the testis and like myosin VI, accumulates on these cones. We have investigated the possibility that Acam is a testis-specific light chain of Drosophila myosin VI. We find that Acam and myosin VI precisely colocalize at the leading edge of the actin cones and that myosin VI is necessary for this Acam localization. Further, myosin VI and Acam co-immunoprecipitate from the testis and interact in yeast two-hybrid assays. Finally Acam binds with high affinity to peptide versions of both myosin VI light chain binding sites. In contrast, although Drosophila CaM also shows high affinity interactions with these peptides, we cannot detect a CaM/myosin VI interaction in the testis. We conclude that Acam and not CaM acts as a myosin VI light chain in the Drosophila testis and hypothesize that it may alter the regulation of myosin VI in this tissue.  相似文献   

8.
Timakov B  Zhang P 《Genetics》2000,155(1):179-189
The heterochromatic Y chromosome of Drosophila melanogaster contains approximately 40 Mb of DNA but has only six loci mutable to male sterility. Region h1-h9 on YL, which carries the kl-3 and kl-5 loci, induces male sterility when present in three copies. We show that three separate segments within the region are responsible for the triplosterility and have an additive effect on male fertility. The triplosterile males displayed pleiotropic defects, beginning at early postmeiotic stages. However, the triplosterility was unaffected by kl-3 or kl-5 alleles. These data suggest that region h1-h9 is complex and may contain novel functions in addition to those of the previously identified kl-3 and kl-5 loci. The kl-3 and kl-5 mutations as well as deficiencies within region h1-h9 result in loss of the spermatid axonemal outer dynein arms. Examination using fluorescent probes showed that males deficient for h1-h3 or h4-h9 displayed a postmeiotic lesion with disrupted individualization complexes scattered along the spermatid bundle. In contrast, the kl-3 and kl-5 mutations had no effect on spermatid individualization despite the defect in the axonemes. These results demonstrate that region h1-h9 carries genetically separable functions: one required for spermatid individualization and the other essential for assembling the axonemal dynein arms.  相似文献   

9.
In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining regions that contain more genes.  相似文献   

10.
The Y chromosome and other heterochromatic regions present special challenges for genome sequencing and for the annotation of genes. Here we describe two new genes (ARY and WDY) on the Drosophila melanogaster Y, bringing its number of known single-copy genes to 12. WDY may correspond to the fertility factor kl-1.  相似文献   

11.
12.
13.
S. Bonaccorsi  A. Lohe 《Genetics》1991,129(1):177-189
The entirely heterochromatic Y chromosome of Drosophila melanogaster contains a series of simple sequence satellite DNAs which together account for about 80% of its length. Molecular cloning of the three simple sequence satellite DNAs of D. melanogaster (1.672, 1.686 and 1.705 g/ml) revealed that each satellite comprises several distinct repeat sequences. Together 11 related sequences were identified and 9 of them were shown to be located on the Y chromosome. In the present study we have finely mapped 8 of these sequences along the Y by in situ hybridization on mitotic chromosome preparations. The hybridization experiments were performed on a series of cytologically determined rearrangements involving the Y chromosome. The breakpoints of these rearrangements provided an array of landmarks along the Y which have been used to localize each sequence on the various heterochromatic blocks defined by Hoechst and N-banding techniques. The results of this analysis indicate a good correlation between the N-banded regions and 1.705 repeats and between the Hoechst-bright regions and the 1.672 repeats. However, the molecular basis for banding does not appear to depend exclusively on DNA content, since heterochromatic blocks showing identical banding patterns often contain different combinations of satellite repeats. The distribution of satellite repeats has also been analyzed with respect to the male fertility factors of the Y chromosome. Both loop-forming (kl-5, kl-3 and ks-1) and non-loop-forming (kl-2 and ks-2) fertility genes contain substantial amounts of satellite DNAs. Moreover, each fertility region is characterized by a specific combination of satellite sequences rather than by an homogeneous array of a single type of repeat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Through evolutionary history, some features of the phenotype show little variation. Stabilizing selection could produce this result, but the possibility also exists that a feature is conserved because it is developmentally constrained--only one or a few developmental mechanisms can produce that feature. We present experimental data documenting developmental constraint in the assembly of the motile sperm tail axoneme. The 9+2 microtubule architecture of the eukaryotic axoneme has been deeply conserved. We argue that the quality of motility supported by axonemes with this morphology explains their long conservation, rather than a developmental necessity for the 9+2 architecture. However, our functional tests in Drosophila spermatogenesis reveal considerable constraint in the coevolution of testis-specific beta-tubulin and the sperm tail axoneme. The evolution of testis beta-tubulins used in insect sperm tail axonemes is highly punctuated, indicating some pressure acting on their evolution. We provide a mechanistic explanation for their punctuated evolution by testing structure-function relationships between testis beta-tubulin and the motile axoneme in D. melanogaster. We discovered that a highly conserved sequence feature of beta-tubulins used in motile axonemes is needed to specify central pair formation. Second, our data suggest that cooperativity in the function of internal beta-tubulin amino acids is needed to support the long axonemes characteristic of Drosophila sperm tails. Thus, central pair formation constrains the evolution of the axoneme motif, and intramolecular cooperativity makes the evolution of the internal residues path dependent, which slows their evolution. Our results explain why a highly specialized beta-tubulin is needed to construct the Drosophila sperm tail axoneme. We conclude that these constraints have fixed testis-specific beta-tubulin identity in Drosophila.  相似文献   

16.

Background  

Loopin-1 is an abundant, male germ line specific protein of Drosophila melanogaster. The polyclonal antibody T53-F1 specifically recognizes Loopin-1 and enables its visualization on the Y-chromosome lampbrush-like loop named kl-3 during primary spermatocyte development, as well as on sperm tails. In order to test lampbrush-like loop evolutionary conservation, extensive phase-contrast microscopy and immunostaining with T53-F1 antibody was performed in other drosophilids scattered along their genealogical tree.  相似文献   

17.
P Zhang  R L Stankiewicz 《Genetics》1998,150(2):735-744
The Y chromosome in Drosophila melanogaster is composed of highly repetitive sequences and is essential only in the male germ line. We employed P-element insertional mutagenesis to induce male sterile mutations in the Y chromosome. By using a combination of two modifiers of position effect variegation, adding an extra Y chromosome and increasing temperature, we isolated 61 P(ry+) elements in the Y chromosome. Six of these Y-linked insertions (approximately 10%) induced male sterile mutations that are mapped to two genes on the long and one on the short arms of the Y chromosome. These mutations are revertible to the wild type in a cell-autonomous and germ-line-dependent manner, consistent with previously defined Y-linked gene functions. Phenotypes associated with these P-induced mutations are similar to those resulting from deletions of the Y chromosome regions corresponding to the male fertility genes. Three alleles of the kl-3 gene on the Y long arm result in loss of the axonemal outer dynein arms in the spermatid tail, while three ks-2 alleles on the Y short arm induce defects at early postmeiotic stages. The recovery of the ms(Y) mutations induced by single P-element insertions will facilitate our effort to understand the structural and functional properties of the Y chromosome.  相似文献   

18.
Klotho mutant mouse (kl-/-), a mouse model for human aging, exhibits various phenotypes in a wide range of organs including arteriosclerosis, neural degeneration, skin and gonadal atrophy, pulmonary emphysema, calcification of soft tissues, and cognition impairment. Klotho mRNA, however, is expressed only in brain, kidney, reproductive organs, pituitary gland, and parathyroid gland. Therefore it remains to be elucidated how lack of Klotho protein in these limited organs leads to the variety of phenotypes. To shed light on mechanisms by which Klotho protein acts on distant targets, we examined localization of Klotho protein in brain, kidney, and reproductive organs, and analyzed brain and kidney in kl-/- mice searching for changes in target regions in these organs. In brain, Klotho proteins were localized at choroid plexus, where the proteins were dominantly localized at the apical plasma membrane of ependymal cells. In kl-/- brain, reduction of synapses was evident in hippocampus, suggesting a role of Klotho as a humoral factor in cerebrospinal fluid. Klotho proteins in kidney localized at distal renal tubules. Interestingly, in kl-/-mice, type IIa Na/phosphate (Pi) cotransporters, which function at the proximal renal tubules in reabsorption of phosphate ions, were translocated. This suggests that Klotho protein in kidney is implicated in calcium homeostasis which regulates localization of type IIa Na/Pi cotransporters via parathyroid hormone (PTH). Klotho proteins in reproductive organs were expressed only in mature germ cells, although in kl-/- mice germ cell maturation was arrested at earlier stages. Thus, Klotho proteins not only function as a humoral factor, but also are implicated in hormonal regulation, which may explain why mutation of klotho gene results in a variety of phenotypes.  相似文献   

19.
20.
The sex-ratio trait, an example of naturally occurring X-linked meiotic drive, has been reported in a dozen Drosophila species. Males carrying a sex-ratio X chromosome produce an excess of female offspring caused by a deficiency of Y-bearing sperm. In Drosophila simulans, such males produce approximately 70-90% female offspring, and 15-30% of the male offspring are sterile. Here, we investigate the cytological basis of the drive in this species. We show that the sex-ratio trait is associated with nondisjunction of Y chromatids in meiosis II. Fluorescence in situ hybridization (FISH) using sex-chromosome-specific probes provides direct evidence that the drive is caused by the failure of the resulting spermatids to develop into functional sperm. XYY progeny were not observed, indicating that few or no YY spermatids escape failure. The recovery of XO males among the progeny of sex-ratio males shows that some nullo-XY spermatids become functional sperm and likely explains the male sterility. A review of the cytological data in other species shows that aberrant behavior of the Y chromosome may be a common basis of sex-ratio meiotic drive in Drosophila and the signal that triggers differential spermiogenesis failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号