首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The total activity of aldolase (EC 4.1.2.13) and the activities of cytosol and chloroplast aldolase were determined in seeds, cotyledons, primary leaves and secondary leaves of spinach (Spinacia oleracea L., cv. Monopa) during germination. Total aldolase activity in cotyledons increased from low levels to a low maximum in the dark after one week and to a high maximum in white light after three to four weeks and declined thereafter. The activity in primary and secondary leaves started to rise strongly from the 18th and 26th days, respectively, up to the 42nd day of germination. The levels of aldolase activity paralleled the development of leaf area, chlorophyll content and protein content per leaf except that the leaf area of cotyledons continued to increase steadily up to the 42nd day after the maximum of aldolase activity was reached. Resolution of cytosol- and chloroplast-specific isoenzymes by chromatography on diethylaminoethylcellulose indicated that in the light the cytosol enzyme represented approx. 8% of the total activity in cotyledons, primary and secondary leaves throughout germination, and the chloroplast enzyme represented the remaining 92%. Only in cotyledons of dark-grown seedlings was the cytosol aldolase between 25 and 50% of the total activity. Seeds contained almost exclusively a cytosol aldolase. In cotyledons the increase of total activity in the light was specifically the consequence of an increase in chloroplast aldolase while the cytosol aldolase was little affected by light. The light effect was mediated by phytochrome as demonstrated by classical induction and reversion experiments with red and far-red light and by continuous far-red light treatment.Abbreviation DEAE-cellulose diethylaminoethylcellulose  相似文献   

2.
Mitochondria isolated from cotyledons of dark-grown cucumber ( Cucumber sativus L., cv. Shimotsuki-Aonaga) seedlings after illumination with continuous far-red light showed an increased capacity for oxidation of malate or α-ketoglutarate, as compared with those from cotyledons of non-illuminated seedlings. This increase is supposed to be caused by phytochrome action (high irradiance response). Exogenous NAD+ had no effect on the rate of the oxidation of α-ketoglutarate or malate by mitochondria isolated from far-red light-treated cotyledons, but it enhanced the oxidation rate of mitochondria from control cotyledons to the level of mitochondria from light-treated ones. The NAD (NAD++ NADH) content was higher in mitochondria isolated from continuously far-red light-treated cotyledons than in mitochondria from controls. The NAD content was also increased by the treatment with a red light pulse and this response was reversed by a subsequent far-red light pulse. It is proposed that phytochrome controls respiratory activities of cucumber mitochondria by changing the size of the NAD pool in the mitochondria.  相似文献   

3.
The development of glycine oxidation activity in mitochondria in etiolated cucumber ( Cucumis sativus L., cv. Shinfushinari) cotyledons is regulated by phytochrome. This conclusion is based on two lines of evidence. 1. The oxidation activity was increased by continuous illumination of far-red light. 2. It was also increased by brief red light pulses, the effect of which was reversed by brief far-red light pulses. The light-induced increase in glycine oxidation and in glycine decarboxylase (EC 2.1.2.10) activity in the cotyledons was inhibited by cycloheximide, but not by chloramphenicol. While glycine oxidation activity continued to increase during light-illumination for 20 h, malate oxidation activity increased for 6 to 8 h after illumination and decreased thereafter. This transient increase in the activity of malate oxidation was also induced by red light pulses and the effect of the red light was reversed by far-red light pulses.  相似文献   

4.
5.
6.
D. Bajracharya  H. Falk  P. Schopfer 《Planta》1976,131(3):253-261
Summary The development of mitochondria from promitochondria is regulated by phytochrome. This conclusion is based on four lines of evidence: 1. The activity of representative mitochondrial marker enzymes (fumarase, EC 4.2.1.2; succinate dehydrogenase, EC 1.3.99.1; cytochrome oxidase, EC 1.9.3.1) is increased by continuous far-red light and (in 2 of the 3 enzymes) by brief red pulses, the effect of which is reversible by brief far-red pulses. These effects do not merely represent a general growth or proliferation of mitochondria already present but specific responses of individual enzymes. Inhibitors of protein synthesis but not of RNA synthesis suppress the increase of these enzyme activities. 2. Continuous far-red light changes some structural properties of the mitochondrial membranes, detectable by an increased requirement of detergent (Triton X-100) for the solubilization of cytochrome oxidase and a more efficient retainment of the matrix enzyme fumarase during isolation of mitochondria. Continuous far-red light increases the apparent buoyant density of mitochondria on a sucrose density gradient. 3. Continuous far-red light has a strong effect on the morphology of the inner mitochondrial membrane system. Electron micrographs from dark-grown cotyledons show arrays of parallel, plate-like cristae while typical plant mitochondria with irregularly oriented sacculi are formed in the light. These responses indicate the involvement of mitochondria in cytophotomorphogenesis during the transition of the cotyledons from dissimilatory to assimilatory metabolism.Abbreviations DCPIP 2.6-dichlorophenole indophenole - EDTA Na2-ethylenediaminetetraacetate - HEPES 2-[4-(2-hydroxyethyl)-piperazine-(1)ethanesulfonic acid - PMS phenazine methosulfate  相似文献   

7.
M. Bosnes  O. -A. Olsen 《Planta》1992,188(3):376-383
In seedlings of the Scots pine (Pinus sylvestris L.), alanine aminotransferase (AlAT EC 2.6.1.2.) is present in the shoot and in the primary root but most activity is found in the cotyledons. During the experimental period (from 6 to 12 d after sowing), AlAT activity increased steadily. Anion exchange chromatography and native polyacrylamide gel electrophoresis were used to show that AlAT activity in extracts from cotyledons is associated with two isoforms of the enzyme. One isoform (AlAT 1) dominated in the cotyledons of lightgrown seedlings, but was absent from primary roots. Its accumulation was strongly increased by light, and both phytochrome and cryptochrome were shown to be involved in this effect. Results of experiments using dichromatic irradiation indicate that cryptochrome acts indirectly by establishing responsiveness towards phytochrome. When plastids were damaged by photooxidation, the accumulation of AlAT 1 decreased; however, AlAT 1 which had accumulated before the onset of photooxidative treatment seemed to remain undamaged. Therefore, and because of the absence of AlAT 1 from primary roots, it is suggested that this isoform is localized in leaf peroxisomes. The isoform AlAT 2 is the only one found in primary roots, and the predominant one in the cotyledons of dark-grown seedlings. It is unaffected by light. Upon photodestruction of plastids, a pronounced increase of its activity was found. This is taken as evidence that AlAT 2 is a cytosolic enzyme. Total AlAT activity in cotyledons was unaffected by feeding nitrate to the seedlings; supplying exogenous ammonium led to a considerably slower accumulation of AlAT compared with water controls. In contrast, AlAT accumulation in the primary roots was augmented by up to 45% if nitrogenous ions were supplied, ammonium being more effective than nitrate.Abbreviations and Symbols AlAT alanine aminotransferase (EC 2.6.1.2.) - B blue light - c continuous - D darkness - Fd-GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1.) - FR far-red light - HPR hydroxypyruvate reductase (EC 1.1.1.81.) - FPLC fast protein liquid chromatography - PAGE polyacrylamide gel electrophoresis - R red light - RG9 long-wavelength far-red light defined by the properties of the Schott glass filter RG9 (RG9 < 0.01) - =Pfr/Ptot far-red-absorbing form of phytochrome/total phtochrome, wavelength-dependent photoequilibrium of the phytochrome system This work was supported by Heidelberger Akademie der Wissenschaften (Forschungsstelle Nitratassimilation). We are very grateful to Ms. B. Seith for measuring the DNA contents of the seedlings.  相似文献   

8.
In etiolated squash (Cucurbita maxima L.) cotyledons, nitrate-inducible NADH:nitrate reductase activity and protein were increased in darkness by red light pulses with red/far-red photoreversibility. Continuous far-red light also led to increased levels of nitrate reductase activity and protein. Poly(A)+RNA, which hybridizes to squash nitrate reductase cDNA, was also increased by light treatments. Thus, we found that after nitrate triggering, nitrate reductase expression appears to be regulated by light via phytochrome.  相似文献   

9.
The effects of red and far-red light on the enhancement of in vitro nitrate reductase activity and on nitrate accumulation in etiolated excised maize leaves were examined. Illumination for 5 min with red light followed by a 4-h dark period caused a marked increase in nitrate reductase activity, whereas a 5-min illumination with far-red light had no effect on the enzyme activity. The effect of red light was completely reversed by a subsequent illumination with the same period of far-red light. Continuous far-red light also enhanced nitrate reductase activity. Both photoreversibility by red and far-red light and the operation of high intensity reaction under continuous far-red light indicated that the induction of nitrate reductase was mediated by phytochrome. Though nitrate accumulation was slightly enhanced by red and continuous far-red light treatments by 17% and 26% respectively, this is unlikely to account for the entire increase of nitrate reductase activity. The far-red light treatments given in water, to leaves preincubated in nitrate, enhanced nitrate reductase activity considerably over the dark control. The presence of a lag phase and inhibition of increase in enzyme activity under continuous far-red light-by tungstate and inhibitors of RNA synthesis and protein synthesis-rules out the possibility of activation of nitrate reductase and suggests de novo synthesis of the enzyme affected by phytochrome.  相似文献   

10.
C. B. Johnson 《Planta》1976,129(2):127-131
Summary Nitrate reductase in the cotyledons of etiolated seedlings of Sinapis alba L. responds rapidly to the addition of nitrate. The response is inhibited by cycloheximide at low concentrations. The enzyme is also under phytochrome control. Five minutes of red light irradiation leads instantaneously to a 45% increase in enzyme activity. Increases in activity, linear with respect to time and with no lag phases are promoted by continuous far-red or blue irradiation. These increases are insensitive to cycloheximide. Thus, light and nitrate act through different mechanisms in controlling nitrate reductase activity and phytochrome does not act via controlling the rate of synthesis of the enzyme.Abbreviation cot pr pair of cotyledons  相似文献   

11.
Aconitase (EC 4.2.1.3) was purified by column chromatography and SDS-PAGE. Specific antibodies for aconitase were prepared after affinity purification of the antiserum with purified aconitase. The antibodies reacted with purified pumpkin aconitase, and with the 98 kDa protein band after electrophoretic fractionation of extracts of pumpkin cotyledons. Immunoblot analysis revealed a protein with similar molecular mass in extracts of several plants. The intensity of the 98 kDa band increased as pumpkin cotyledons developed in darkness, and decreased thereafter upon illumination. Aconitase activity showed a similar pattern. Anion exchange chromatography of a homogenate of pumpkin cotyledons, followed by western blotting, displayed the presence of immunoreactive protein bands only in fractions showing aconitase activity. The results indicate that the antibodies were specific for aconitase. When we investigated the presence of immunoreactive bands after sucrose gradient fractionation, aconitase was detected in the supernatant fractions and in mitochondria, while a very low amount was found in glyoxysomes. These data provide additional proof that aconitase is not localized in glyoxysomes.  相似文献   

12.
Renate Grill 《Planta》1969,89(1):9-22
Summary As measured by in vivo spectrophotometry the phytochrome content in etiolated turnip seedlings was higher in cotyledons than in hypocotyls; in the latter, it is confined to the apical part. During early growth in darkness the amount increased in both tissues to a maximum, reached about 40 hours after sowing; the levels then gradually declined. Separation of seedlings into hypocotyl and cotyledons increased the rate of phytochrome loss in the former, but not in the latter.Following 5 minutes of red light P frdecayed very rapidly in darkness; after 1.5 hours all of the phytochrome was present as P r, which was presumably not converted initially. In continuous red light the total phytochrome was reduced to below the detection level within 3 hours. Seedling age markedly affected the loss of phytochrome following red light; more was destroyed in older than in younger hypocotyls and apparent new synthesis occurred only in young seedlings. The capacity to synthesise phytochrome differed in cotyledons and hypocotyl. In cotyledons, synthesis occurred following shots of red light varying from 10 seconds, to 6×I minute, but the amount of newly formed phytochrome was not related to the amount destroyed: after 5 hours of continuous red light no new synthesis occurred. In hypocotyls, the amount of phytochrome synthesised was related to the amount previously destroyed, and the phytochrome content after 24 hours of darkness was similar following all red light treatments of 1 minute or longer: new synthesis occurred following 5 hours of continuous red light.In far-red light phytochrome decayed very slowly, approaching the limit of detection after 48 hours. In cotyledons some loss was already observed after 5 hours of far-red and, in hypocotyls, after about 10 hours.These results are discussed in relation to the possible role of phytochrome as the pigment mediating anthocyanin synthesis in prolonged far-red light.  相似文献   

13.
Surrey K 《Plant physiology》1967,42(3):421-424
Lipoxidase, in the cotyledons of squash (Cucurbita moscata) seedlings grown in the dark, reached its peak activity on the fifth day and then declined to its lowest activity on the eighth day. Under continuous irradiation, the rate of enzyme disappearance was accelerated by red (655 mμ) and was retarded by far-red (735 mμ) radiation. Acceleration of enzyme disappearance caused by red light was reversed repeatedly by far-red light in seedlings that received an initial exposure to red radiation. These responses were independent of the duration of irradiation at each of the alternating wavebands. No change was observed when the white light was administered either 24 hours before or 24 hours after the red, far-red treatment.

The lipoxidase system of the seedlings given an initial exposure to far-red radiation also responded reversibly to alternating far-red, red extended exposures, but it failed to respond reversibly when short exposures were employed. Similarly, no change occurred in these seedlings when either pre- or post-treatment with the white light was applied.

These results demonstrate that the capacity of lipoxidase to act reversibly depends primarily on the duration of exposure and on the kind of light (red or far-red) to which the seedlings were exposed initially. In spite of these variations, lipoxidase metabolism can be considered an additional biochemical manifestation of red, far-red reaction that operates in the photomorphogenesis of plants.

  相似文献   

14.
Phytochrome-induced increases in enzyme activities for phenylalanine ammonia-lyase (EC 4.3.1.5) and chalcone isomerase (EC 5.5.1.6), and in amounts of the related end products, anthocyanin and the flavonol, quercetin, were measured in cotyledons of mustard (Sinapis alba L.). There was no correlation between the activities of these enzymes and the rate of anthocyanin accumulation; however, some correlation was found with the quercetin accumulation rate. Since anthocyanin and flavonol accumulation is spatially separated in mustard (flavonols in the upper epidermis, anthocyanin in the lower epidermis), it was possible to measure anthocyanin-associated phenylalanine ammonia-lyase independently. This activity correlated well with the accumulation rate for anthocyanin during the first few hours after induction. The phytochrome effect on anthocyanin formation differed from that on quercetin formation: anthocyanin was strongly induced by continuous far-red light and by both continuous red light and red light pulses, whereas quercetin was only effectively induced by continuous far-red light.Abbreviations CHI chalcone isomerase - PAL phenylalanine ammonia-lyase  相似文献   

15.
E. Mösinger  K. Bolze  P. Schopfer 《Planta》1982,155(2):133-139
In order to clarify the relationship between photomorphogenesis and DNA replication we investigated the effect of continuous far-red or white light on the synthesis of DNA in the cotyledons and the hypocotyl of mustard seedlings between 36 and 108 h after sowing. The total DNA content of the cotyledons (about 2.2 pg cell-1) did not significantly change during this period although long-term labeling experiments revealed newly synthesized DNA of nuclear, plastid, and mitochondrial origin. Light had no detectable effect on total DNA content and on the labeling of either DNA fraction. Histoautoradiography indicated that nuclear DNA synthesis was exclusively localized in dividing stomatal cells and in sieve tube companion cells undergoing endopolyploidization. The DNA content of the hypocotyl increased continuously but likewise showed no detectable effect of light. It is concluded that cell growth and differentiation during photomorphogenesis is independent of DNA synthesis.Abbreviation DABA 3,5-diaminobenzoic acid  相似文献   

16.
D. Bajracharya  P. Schopfer 《Planta》1979,145(2):181-186
The degradation of storage fat in the cotyledons of mustard seedlings is unaffected by phytochrome and photosynthesis (irradiation with continuous red or far-red light from sowing of the seeds) although light imposes a strong constraint on the translocation of organic matter from the cotyledons into the seedling axis. Likewise, the development and disappearance of glyoxysomal enzyme activities (isocitrate lyase, malate synthase, citrate synthase) takes place independently of light. It is concluded that the mobilization of storage fat (fatcarbohydrate transformation) is independent of photomorphogenesis. The surplus of carbohydrate produced from fat in the light seems to be converted to starch grains in the plastids, which function as a secondary storage pool in the cotyledons.Abbreviations CS citrate synthase - ICL isocitrate lyase - MS malate synthase  相似文献   

17.
Y. -N. Hong  P. Schopfer 《Planta》1981,152(4):325-335
The peroxisomal enzyme, urate oxidase (EC 1.7.3.3), and the next enzyme of the urate pathway, allantoinase (EC 3.5.2.5), demonstrate a lightmediated rise of activity in the cotyledons of mustard (Sinapis alba L.). The capacity of the peroxisomes for urate breakdown, marked by the time course of urate oxidase, develops distinctly later than the two other peroxisome functions (fatty acid breakdown, glyoxysomal function; glycolate breakdown, leaf peroxisomal function). The light effect on urate oxidase and allantoinase is mediated through the phytochrome system in all three seedling organs (cotyledons, hypocotyl, radicle), as revealed by induction/reversion experiments with red/far-red light pulses and continuous irradiation with far-red light (high irradiance reaction of phytochrome). Both enzyme activities can be induced by phytochrome in the seedling cotyledons only during a sensitive period of about 48 h prior to the actual light-mediated rise of activity, making it necessary to assume the existence of a long-lived intermediate (transmitter) in the signal response chain connecting enzyme formation to the phytochrome system. Detailed kinetic investigation, designed to test whether urate oxidase and allantoinase are controlled by phytochrome via the same signal response chain (coordinate induction), revealed large differences between the two enzymes: (i) a different onset of the loss of reversibility of a red light induction by a far-red light pulse (=onset of transmitter formation=coupling point; 48 h/24 h after sowing for urate oxidase/allantoinase); (ii) a different onset of the response (=onset of competence for transmitter= starting point; 72 h/48 h); (iii) full loss of reversibility (=completion of transmitter formation) is reached at different times (independence point, 90 h/52 h). These differences show that phytochrome controls urate oxidase and allantoinase via separate signal response chains. While urate oxidase can be localized in the peroxisomal fraction isolated from crude organelle extracts of the cotyledons by density gradient centrifugation, most of the allantoinase activity found in the peroxisomal fraction did not appear to be an integral part of the peroxisome but originated presumably from adhering membrane fragments.Abbreviations AL allantoinase, EC 3.5.2.5 - CAT catalase, EC 1.11.1.6 - GO glycolate oxidase, EC 1.1.3.1 - ICL isocitrate lyase, EC 4.1.3.1 - UO urate oxidase, EC 1.7.3.3. Pr - Pfr red and far-red absorbing forms of phytochrome On the occasion of his 80th birthday we dedicate this paper to Prof. Dr. phil., Dr. mult. h.c. Kurt Mothes, pioneer in research on metabolism of urates  相似文献   

18.
M. Masoner  G. Unser  H. Mohr 《Planta》1972,105(3):267-272
Summary Data are presented which indicate that the rate of synthesis and the pool size of photoconvertible protochlorophyll(ide) in the cotyledons of the mustard seedling are controlled by the active form of phytochrome (Pfr). Inductionreversion experiments show that formation of chlorophyll a through photoconversion of the protochlorophyll(ide) by repeated red pulses (5 min each) has no effect on synthesis of carotenoids and galactolipids. Since the protochlorophyll(ide)-converting activity of the standard far-red light used in this laboratory is very low, chlorophyll-a accumulation is very slow under continuous standard far-red light. It is concluded that photosynthesis (or photosynthetic phosphorylation) does not participate in the high irradiance reaction of photomorphogenesis.  相似文献   

19.
Changes in the activity and abundance of NADPH:protochlorophyllide oxidoreductase (NPR) and the abundance of mRNA encoding it were examined during the greening of 5-d-old etiolated cucumber cotyledons under continuous illumination. To measure NPR activity in the extracts from fully greened tissues, we have developed an improved method of assay. Upon exposure of etiolated cotyledons to light, NPR activity decreased rapidly within the first 2 h of exposure. Thereafter, enzymatic activity increased transiently, reaching a submaximum level at 12 h, and decreased slowly. The level of immunodetectable NPR protein followed the same pattern of changes during 96 h of greening as observed for NPR activity. The NPR mRNA in etiolated cotyledons disappeared quickly in the 1st h of irradiation. However, the level of mRNA increased thereafter to reach 3-fold or more of the dark level at 12 h and then decreased. The changes in the activity, protein level, and mRNA level after the first rapid decreases corresponded chronologically and nearly paralleled the increase in the rate of chlorophyll accumulation. These findings suggest that the greening of cucumber cotyledons is regulated basically by the level of NPR protein without activation or repression of enzymatic activity and that NPR mRNA increased by light maintains the level of enzyme protein necessary for greening.  相似文献   

20.
H. Kasemir  P. Huber  H. Mohr 《Planta》1976,132(2):157-160
Summary Significant accumulation of photoconvertible protochlorophyll(ide) in the cotyledons of the mustard seedling takes place from 24 h after sowing onwards (25° C). The rate of accumulation in darkness is greatly increased by a pretreatment with red or far-red light. The strong effect of continuous red light, given from the time of sowing, remains fully reversible by a 756 nm-light pulse up to about 18 h after sowing. On the other hand, the effect of continuous far-red light which can be detected at 15 h after sowing is not influenced by a subsequent application of 756 nm-light pulses. An interpretation of the data requires the concept that continuous red light and continuous far-red light act from different sites. This conclusion is based on a comparison of the present data with the earlier published data on phytochromemediated anthocyanin synthesis in the mustard seedling cotyledons.Abbreviations PChl protochlorophyll(ide) - Chl chlorophyll(ide) - Ptr far-red absorbing form of the phytochrome system (physiologically active) - Pr red absorbing form of the phytochrome system - [Ptot] [Pr]+[Pfr] Supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 46).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号