首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ethylene production by tissue slices from preclimacteric, climacteric, and postclimacteric apples was significantly reduced by isopentenyl adenosine (IPA), and by mixtures of IPA and indoleacetic acid, and of IPA, indoleacetic acid, and gibberellic acid after 4 hours of incubation. Ethylene production by apple (Pyrus malus L.) slices in abscisic acid was increased in preclimacteric tissues, decreased in climacteric peak tissues, and little affected in postclimacteric tissues. Indoleacetic acid suppressed ethylene production in tissues from preclimacteric apples but stimulated ethylene production in late climacteric rise, climacteric, and postclimacteric tissue slices. Gibberellic acid had less influence in suppressing ethylene production in preclimacteric peak tissue, and little influenced the production in late climacteric rise, climacteric peak, and postclimacteric tissues. IPA also suppressed ethylene production in pre- and postclimacteric tissue of tomatoes (Lycopersicon esculentum) and avocados (Persea gratissima). If ethylene production in tissue slices of ripening fruits is an index of aging, then IPA would appear to retard aging in ripening fruit, just as other cytokinins appear to retard aging in senescent leaf tissue.  相似文献   

4.
Ray PM 《Plant physiology》1973,51(4):609-614
The 2- to 4-fold rise in particle-bound β-glucan synthetase (uridine diphosphate-glucose: β-1, 4-glucan glucosyltransferase) activity that can be induced by indoleacetic acid in pea stem tissue is not prevented by concentrations of actinomycin D or cycloheximide that inhibit growth and macromolecule synthesis. The rise is concluded to be a hormonally induced activation of previously existing, reversibly deactivated enzyme. The activation is not a direct allosteric effect of indoleacetic acid or sugars. It is blocked by inhibitors of energy metabolism, by 2-deoxyglucose, and by high osmolarity, but not by Ca2+ at concentrations that inhibit auxin-induced elongation and prevent promotion of sugar uptake by indoleacetic acid, and not by α, α′-dipyridyl at concentrations that inhibit formation of hydroxyproline. Regulation of the system could be due either to an ATP-dependent activating reaction affecting this enzyme, or to changes in levels of a primer or a lipid cofactor.  相似文献   

5.
α-Amanitin, a potent inhibitor of RNA polymerase II, is found inert against transformed fibroblasts in tissue culture. However, when α-amanitin is synergistically used with amphotericin B, RNA and protein synthesis are strongly blocked. Our data suggest that messenger RNA formation is preferentially inhibited since (1) the total inhibition by α-amanitin was greatly magnified when rRNA synthesis was first blocked with 0.03 μg/ml actinomycin D; (2) mRNA in polysomes was greatly reduced and the size of polysomes diminished after cells were exposed to 2 μg/ml α-amanitin plus 20 μg/ml amphotericin B for 5 h.  相似文献   

6.
Infection of immature pea pods with Fusarium solani f.sp. phaseoli (a non-pathogen of peas) or f.sp. pisi (a pea pathogen) resulted in induction of chitinase and β-1,3-glucanase. Within 30 hours, activities of the two enzymes increased 9-fold and 4-fold, respectively. Chitinase and β-1,3-glucanase were also induced by autoclaved spores of the two F. solani strains and by the known elicitors of phytoalexins in pea pods, cadmium ions, actinomycin D, and chitosan. Furthermore, exogenously applied ethylene caused an increase of chitinase and β-1,3-glucanase in uninfected pods. Fungal infection or treatment with elicitors strongly increased ethylene production by immature pea pods. Infected or elicitor-treated pea pods were incubated with aminoethoxyvinylglycine, a specific inhibitor of ethylene biosynthesis. This lowered stress ethylene production to or below the level of uninfected controls; however, chitinase and β-1,3-glucanase were still strongly induced. It is concluded that ethylene and fungal infection or elicitors are separate, independent signals for the induction of chitinase and β-1,3-glucanase.  相似文献   

7.
Protoplast and cell suspension cultures of Daucus carota L. were evaluated for their sensitivity toward the three amatoxin derivatives, α-amanitin, 6′-deoxy-α-amanitin, and 6′-O-methyl-α-amanitin using inhibition of DNA synthesis to measure cell viability. Protoplasts appeared approximately 10-fold more refractory than suspension cells and α-amanitin was much less effective than the other two amatoxins, even though Ki values for isolated RNA polymerase II were similar (4-5 nanomolar). Additional studies evaluating the recoveries of all three amatoxins from cell suspension supernates indicate one basis for these differences to be the selective degradation of α-amanitin. A mechanism involving the activation of the hydroxyindole moiety of the α-amanitin is thus invoked to explain these differences and we postulate the involvement of plant oxidases in this role.  相似文献   

8.
α-Amanitin acts in vitro as a selective inhibitor of the nucleoplasmic form B RNA polymerases. Treatment of Chinese hamster ovary (CHO) cells with this drug leads principally to a severe fragmentation of the nucleoli. While the ultrastructural lesions induced by α-amanitin in CHO cells and in rat or mouse liver are quite similar, the results diverge concerning the effect on RNA synthesis. It has been shown that in rat or mouse liver α-amanitin blocks both extranucleolar and nucleolar RNA synthesis. Our autoradiographic and biochemical evidence indicates that in CHO cells high molecular weight extranucleolar RNA synthesis (HnRNA) is blocked by the α-amanitin treatment, whereas nucleolar RNA (preribosomal RNA) synthesis remains unaffected even several hours after the inhibition of extranucleolar RNA synthesis. Furthermore, the processing of this RNA as well as its transport to the cytoplasm seem only slightly affected by the treatment. Finally, under these conditions, the synthesis of the low molecular RNA species (4–5S) still occurs, though less actively. The results are interpreted as evidence for a selective impairment of HnRNA synthesis by α-amanitin in CHO cells.  相似文献   

9.
Cortex tissue from postclimacteric `Golden Delicious' apples (Malus domestica, Borkh.) stored at 0 C for 9 months after harvest were induced to form callus in vitro. Cell suspension cultures were subsequently formed from calli. Of five media tested, only the medium of Schenk and Hildebrandt (Can J Bot 1972, 50: 192) and that of Uchimiya and Murashige (Plant Physiol 1974, 54: 936) allowed callus formation. During growth both the callus and cell cultures produced ethylene in a pattern which showed a rapid rise and then a fall as the culture grew. 14C-Labeled methionine was converted to labeled ethylene by the cell suspension cultures, which also could be inhibited from producing ethylene by a rhizobitoxine analog or free radical scavengers. Ethylene production in these cultures, like that in intact fruit tissue slices, could be stimulated by IAA or suppressed by N6-(γ,γ-dimethylallyl) adenosine and GA3.  相似文献   

10.
To elucidate the possible role of nucleolar phosphoprotein B23 in ribosome synthesis, drugs which inhibit the processing of ribosomal RNA were employed. After treatment with actinomycin D, toyocamycin or high doses of α-amanitin, a uniform nucleoplasmic fluorescence was observed. Low doses of α-amanitin and the protein synthesis inhibitor puromycin and cycloheximide had no effect on protein B23 translocation. By ELISA immunoassay, there was a 60% decrease in the amount of protein B23 in the nucleoli of the actinomycin D-treated cells as compared with the control nucleoli. Conversely, the amount of protein B23 in the nucleoplasm (excluding nucleoli) was 3-fold higher in the actinomycin D-treated cells. Preribosomal ribunucleoprotein particles (pre-rRNPs) were extracted from isolated nucleoli of Novikoff hepatoma ascites cells and fractionated on sucrose density gradients. Protein B23 was found co-localized with the pre-rRNPs as determined by ELISA assays which agrees with previous studies. The proteins in these 80 S and 55 S pre-ribosomal ribonucleoprotein particles were fractionated by 10% gel electrophoresis. Immunoblots showed protein B23 was present in both pre-rRNPs.  相似文献   

11.
The inhibitory activities of amatoxins on the growth of Chlamydomonas reinhardtii have been determined using a convenient assay based upon incubation in multiwell tissue culture plates followed by turbidimetric estimates of growth on a multiwell plate reader. Values for the inhibitory dosage at which growth is 50% of untreated culture (ID50) of 5.4, 6.6, and 5.6 micromolar were obtained for α-amanitin, O-methyl-α-amanitin, and amaninamide, respectively. Treatment of liquid cultures with 1 microgram per milliliter N-methyl-N′ -nitro-N-nitrosoguanidine followed by growth in agar pour tubes containing 25 micromolar α-amanitin led to the selection of several lines demonstrating varying resistance to amanitin inhibition, with ID50 values from 36 micromolar to greater than 200 micromolar. Two lines completely resistant to inhibition by 200 micromolar α-amanitin provided partially purified RNA polymerase activities that were 160-fold and 5600-fold more resistant to inhibition than the analogous enzyme activity from the wild-type strain. These studies provide evidence that Chlamydomonas reinhardtii does not contain significant activity capable of inactivating α-amanitin and that this amatoxin may be used to select for RNA polymerase mutants.  相似文献   

12.
Wang CY  Adams DO 《Plant physiology》1982,69(2):424-427
1-Aminocyclopropane-1-carboxylic acid (ACC) level, ACC synthase activity, and ethylene production in cucumbers (Cucumis sativus L.) remain low while the fruit are held at a temperature which causes chilling injury (2.5°C) and increase rapidly only upon transfer to warmer temperatures. The increase in ACC synthase activity during the warming period is inhibited by cycloheximide but not cordycepin or α-amanitin. Our data indicate that the synthesis of ACC synthase, which results in increased ACC levels and accelerated ethylene production, occurs only upon warming, possibly from a message produced or unmasked during the chilling period. Ethylene production by chilled (2.5°C) cucumbers increased very little upon transfer to 25°C if the fruit were chilled for more than 4 days. The fruit held for 4 days or longer showed a large increase in ACC levels but little ethylene production even in the presence of exogenous ACC. This suggests that the system which converts ACC to ethylene is damaged by prolonged exposure to the chilling temperature. Cucumbers stored at a low but nonchilling temperature (13°C) showed very little change in ACC level, ethylene production, or ACC synthase activity even after transfer to 25°C.  相似文献   

13.
The use of metabolic inhibitors indicated that ethylene-enhancement of light-induced anthocyanin biosynthesis in Sorghum vulgare is through promotion of enzyme synthesis. Ethylene treatment had no effect on the amount of cyanidin synthesized in sorghum tissue infiltrated with actinomycin D to inhibit RNA synthesis. Treatment of sorghum tissue with ethylene in the dark for 24 hr prior to light-induction of anthocyanin biosynthesis reduced the ability of cycloheximide to inhibit anthocyanin formation in the tissue. Ethylene treatment promoted the biosynthesis of two 3-deoxyanthocyanidins in sorghum for which light-induced RNA synthesis is not necessary.  相似文献   

14.
Two DNA-dependent RNA polymerases (ribonucleoside triphosphate:RNA nucleotidyl transferase, EC 2.7.7.6) have been isolated from pea (Pisum sativum) seedlings. The enzymes were solubilized by sonication in high salt buffer and were separated by chromatography on diethylaminoethyl cellulose using a linear salt gradient. Polymerase I eluted at 0.10 m (NH4)2SO4, accounted for about 10% of the recovered activity and was completely insensitive to α-amanitin. Polymerase II eluted at 0.14 m (NH4)2SO4, accounted for the remaining 90% of recovered activity and was strongly inhibited by α-amanitin. Both enzymes preferred denatured to native DNA as template, both showed an absolute requirement of divalent cation, and both were sensitive to the ionic strength of the assay medium. The developing pea seedling seems a promising system for studies of possible changes in relative activities and roles of multiple RNA polymerases during eukaryotic development.  相似文献   

15.
α-Amanitin acts in vitro and in vivo as a selective inhibitor of nucleoplasmic RNA polymerases. Treatment of mice with low doses of α-amanitin causes the following changes in the synthesis, maturation and nucleocytoplasmic transfer of liver RNA species. 1. The synthesis of the nuclear precursor of mRNA is strongly inhibited and all electrophoretic components are randomly affected. The labelling of cytoplasmic mRNA is blocked. These effects may be correlated with the rapid and lasting inhibition of nucleoplasmic RNA polymerase. 2. The synthesis and maturation of the nuclear precursor of rRNA is inhibited within 30min. (a) The initial effect is a strong (about 80%) inhibition of the early steps of 45S precursor rRNA maturation. (b) The synthesis of 45S precursor rRNA is also inhibited and the effect increases from about 30% at 30min to more than 70% at 150min. (c) The labelling of nuclear and cytoplasmic 28S and 18S rRNA is almost completely blocked. The labelling of nuclear 5S rRNA is inhibited by about 50%, but that of cytoplasmic 5S rRNA is blocked. (d) The action of α-amanitin on the synthesis of precursor rRNA cannot be correlated with the slight gradual decrease of nucleolar RNA polymerase activity (only 10–20% inhibition at 150min). (e) The inhibition of precursor rRNA maturation and synthesis precedes the ultrastructural lesions of the nucleolus detected by standard electron microscopy. 3. The synthesis of nuclear 4.6S precursor of tRNA is not affected by α-amanitin. However, the labelling of nuclear and cytoplasmic tRNA is decreased by about 50%, which indicates an inhibition of precursor tRNA maturation. The results of this study suggest that the synthesis and maturation of the precursor of rRNA and the maturation of the precursor of tRNA are under the control of nucleoplasmic gene products. The regulator molecules may be either RNA or proteins with exceedingly fast turnover.  相似文献   

16.
RNA synthesis in fat body nuclei of Sarcophaga peregrina larvae was temporarily activated after injection of β-ecdysone: increased synthesis was detectable 2 hr after injecting the hormone and lasted for at least 2 hr. This increased RNA synthesis was insensitive to α-amanitin and was observed in KCl-free reaction mixture, indicating that β-ecdysone activated RNA polymerase I but not RNA polymerase II. No activation was observed when protein synthesis was inhibited by cycloheximide, suggesting that protein synthesis was essential for the activation of the nuclei.  相似文献   

17.
Substrate induction of nitrate reductase in barley aleurone layers   总被引:5,自引:5,他引:5       下载免费PDF全文
Nitrate induces the formation of nitrate reductase activity in barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. Previous work has demonstrated de novo synthesis of α-amylase by gibberellic acid in the same tissue. The increase in nitrate reductase activity is inhibited by cycloheximide and 6-methylpurine, but not by actinomycin D. Nitrate does not induce α-amylase synthesis, and it has no effect on the gibberellic acid-induced synthesis of α-amylase. Also, there is little or no direct effect of gibberellic acid (during the first 6 hr of induction) or of abscisic acid on the nitrate-induced formation of nitrate reductase. Gibberellic acid does interfere with nitrate reductase activity during long-term experiments (greater than 6 hr). However, the time course of this inhibition suggests that the inhibition may be a secondary one. Barley aleurone layers therefore provide a convenient tissue for the study of both substrate- and hormone-induced enzyme formation.  相似文献   

18.
Cycloheximide inhibited ethylene production in excised pea root tips treated with high levels of indoleacetic acid (100 μm and 10 μm). In contrast, cycloheximide did not inhibit ethylene production induced by a lower concentration (1 μm) of indoleacetic acid unless it was added 2 hours before the indoleacetic acid treatment. These observations suggest that indoleacetic acid has two effects on the enzyme system involved in ethylene synthesis. At low concentrations (1 μm) indoleacetic acid increases ethylene production without protein synthesis, whereas at the higher concentrations, the synthesis of new protein is associated with increased ethylene production.  相似文献   

19.
20.
The repeated exposure of Pisum (pea) plants to red light brings into operation an apparent synthesis of phytochrome which is not observed in material kept in the dark. This process shows some temperature compensation but has an optimum at 26°; it is irreversibly inhibited by 10−4 m cycloheximide and 10 μg/ml actinomycin D. It is also inhibited by the auxins indoleacetic acid, naphthalene acetic acid and 2,4-dichlorophenoxyacetic acid at 10−4 m but in these cases the inhibition is completely reversed when the auxin is washed out of the tissue. Antiauxins 2,4,6-trichlorophenoxyacetic acid and p-chlorophenoxy isobutyric acid, while strongly inhibiting growth have little effect on apparent synthesis. Other growth regulators and the precursor of tetrapyrrole synthesis, δ-aminolevulinic acid, have no consistent effect on the process, but 3 × 10−4 m cobalt (II) nitrate is inhibitory. The capacity for apparent synthesis decreases as the cells approach maturity. The results may be explained by either de novo synthesis of phytochrome, or by a transformation process resembling in some respects the dark reversion of Pfr to Pr. The physiological role of apparent synthesis is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号