首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemically synthesized small interfering RNAs (siRNAs) have been widely used to identify gene function and hold great potential in providing a new class of therapeutics. Chemical modifications are desired for therapeutic applications to improve siRNA efficacy. Appropriately protected ribonucleoside-3'-yl S-[β-(benzoylmercapto)ethyl]pyrrolidino-thiophosphoramidite monomers were prepared for the synthesis of siRNA containing phosphorodithioate (PS2) substitutions in which the two non-bridging oxygen atoms are replaced by sulfur atoms. A series of siRNAs containing PS2 substitutions have been strategically designed, synthesized, and evaluated for their gene silencing activities. These PS2-siRNA duplexes exhibit an A-form helical structure similar to unmodified siRNA. The effect of PS2 substitutions on gene silencing activity is position-dependent, with certain PS2-siRNAs showing activity significantly higher than that of unmodified siRNA. The relative gene silencing activities of siRNAs containing either PS2 or phosphoromonothioate (PS) linkages at identical positions are variable and depend on the sites of modification. 5'-Phosphorylation of PS2-siRNAs has little or no effect on gene silencing activity. Incorporation of PS2 substitutions into siRNA duplexes increases their serum stability. These results offer preliminary evidence of the potential value of PS2-modified siRNAs.  相似文献   

2.
Nonviral vectors, with their low immunogenicity and lack of pathogenicity, offer significant promise for siRNA therapy with fewer safety concerns. Nonviral vectors were also preferred in most transient siRNA delivery due to their ease of preparation. Previously, we incorporated tertiary amines and polyethylene glycol (PEG) into poly(ester urethane) to synthesize a soluble poly(amino ester glycol urethane), PaE(G)U, as a novel DNA transfection reagent for transgene delivery. The aim of this study was to develop PaE(G)U/siRNA polyplexes for gene silencing. We characterized the properties of PaE(G)U/siRNA polyplexes and compared them with those of PaE(G)U/DNA polyplexes. Using the Alexa Fluor 488-labeled, nonsilencing control siRNA as the reporter, we visualized cellular uptake of PaE(G)U/siRNA polyplexes and optimized the mass ratio of PaE(G)U/siRNA for delivery at 80/1. At this ratio, the average diameter of polyplexes was 540 nm, which was significantly larger than the average diameter of PaE(G)U/DNA polyplexes at 155 nm for efficient DNA delivery. Using the optimized PaE(G)U/siRNA polyplexes, transient silencing of constitutive luciferase expression (up to 92%) was achieved in our recombinant human HT-1080 fibroblast model via anti-luciferase siRNA delivery. In conclusion, PaE(G)U/siRNA polyplexes were developed and optimized for cellular uptake to allow efficient gene silencing. Engineering of soluble biodegradable polymers to incorporate amino, ester, PEG, and urethane units in the backbone constitutes a useful approach for the future design of siRNA carriers.  相似文献   

3.
RNA interference (RNAi) was established in Nicotiana benthamiana plants by introducing constructs containing a defective interfering (DI) sequence from Tomato bushy stunt virus (TBSV) in combination with a conserved sense-sequence from the target Grapevine fanleaf virus (GFLV). Silencing in plants was confirmed by Agrobacterium-mediated infiltration of a GFP-sensor containing the GFLV-derived target sequence. The transgene-induced RNAi led to silencing of the GFP-sensor and GFP fluorescence was absent post-infiltration. In plants without GFP fluorescence after infiltration with the GFP-sensor, siRNA specific to GFP and the target virus sequence could not be detected. In contrast, infiltrated leaves of wild type and transgenic plants showing GFP fluorescence after infiltration revealed accumulation of siRNA specific to the sequence of the sensor. Silencing could be inhibited by co-infiltration using a p19 silencing suppressor construct together with the GFP-sensor, which always resulted in bright GFP fluorescence. In parallel, virus resistance of transgenic Nicotiana benthamiana was investigated via challenge inoculation with GFLV. Our results indicate that efficient RNAi in transgenic plants does not necessarily lead to a detectable accumulation of siRNA.  相似文献   

4.
RNA interference (RNAi) is a phenomenon of gene silence induced by a double-stranded RNA (dsRNA) homologous to a target gene.RNAi can be used to identify the function of genes or to knock down the targeted genes.In RNAi technology,19 bp double-stranded short interfering RNAs (siRNA) with characteristic 3' overhangs are usually used.The effects of siRNAs are quite varied due to the different choices in the sites of target mRNA.Moreover,there are many factors influencing siRNA activity and these factors are usually nonlinear.To find the motif features and the effect on siRNA activity,we carried out a feature extraction on some published experimental data and used these features to train a backpropagation neural network (BP NN).Then,we used the trained BP NN to predict siRNA activity.  相似文献   

5.
壳聚糖经果糖修饰以改善其水溶性,再经半胱氨酸修饰得到巯基化果糖-壳聚糖。海藻酸钠与巯基化果糖-壳聚糖混合溶液经氯化钙及硫酸钠双重交联制得复合水凝胶珠。溶胀试验结果表明:该凝胶珠在pH值6.8及7.4时的溶胀率分别是pH值1.2时的7倍和10倍左右。牛血清白蛋白(BSA)包载试验结果表明:BSA重量为凝胶珠质量的20%时,包载率可达94%以上,随着巯基化果糖-壳聚糖在凝胶珠中比例增加,BSA包载率上升。BSA释放试验表明:pH值1.2时BSA的释放率很低,只有6%~10%的BSA从凝胶珠中释放出来,随后累积释放量基本不变;pH值6.8和pH值7.4时BSA的释放率迅速提高,因此这种复合水凝胶珠可作为一种潜在的口服蛋白类药物载体。  相似文献   

6.
RNA interference (RNAi) is a phenomenon of gene silence induced by a double-stranded RNA (dsRNA) homologous to a target gene. RNAi can be used to identify the function of genes or to knock down the targeted genes. In RNAi technology, 19 bp double-stranded short interfering RNAs (siRNA) with characteristic 39 overhangs are usually used. The effects of siRNAs are quite varied due to the different choices in the sites of target mRNA. Moreover, there are many factors influencing siRNA activity and these factors are usually nonlinear. To find the motif features and the effect on siRNA activity, we carried out a feature extraction on some published experimental data and used these features to train a back-propagation neural network (BP NN). Then, we used the trained BP NN to predict siRNA activity. __________ Translated from Acta Biophysica Sinica, 2006, 22(6): 429–434 [译自: 生物物理学报]  相似文献   

7.
Novel N,O-acyl chitosan (NOAC) derivatives were synthesized to examine their fungicidal activity against the gray mould fungus Botrytis cinerea (Leotiales: Sclerotiniaceae) and the rice leaf blast fungus Pyricularia oryzae (Teleomorph: Magnaporth grisea). The fungicidal activity was evaluated by the radial growth bioassay. NOAC derivatives were more active against the two plant pathogens than chitosan itself, and the effect was concentration dependent. Against B. cinerea, 4-chlorobutyryl chitosan (EC50=0.043%), decanoyl chitosan (EC50=0.044%), cinnamoyl chitosan (EC50=0.045%), and p-methoxybenzoyl chitosan (EC50=0.050%) were the most active (12-13-fold more active than chitosan). (Un)-substituted benzoyl chitosan derivatives were more active against B. cinerea than most of these with N,O-alkyl derivatives. Against P. oryzae chitosan derivatives with lauroyl, methoxy acetyl, methacryloyl and decanoyl were the most active.  相似文献   

8.
Xu T  Xin M  Li M  Huang H  Zhou S  Liu J 《Carbohydrate research》2011,346(15):2445-2450
N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by 1H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba2+ and Ca2+) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na+ slightly reduced the antibacterial activity of both chitosan and its derivatives.  相似文献   

9.
Chitosan-based gene delivery systems are promising candidates for non-viral gene therapy. A wide range of chitosans has been studied to optimize the properties of the DNA–chitosan complexes to yield high transfection efficiencies. An important parameter to control is the polyplex stability to allow transport towards the cells, subsequent internalization and release of DNA intracellularly. The stability of the DNA–chitosan complexes was here studied after exposure to heparin and hyaluronic acid (HA) using atomic force microscopy (AFM) and ethidium bromide (EtBr) fluorescence assay. To study the effect of polycation chain length on the polyplex stability, chitosans with a degree of polymerization (DP) varying from ∼10 to ∼1000 were employed for DNA compaction. Whereas HA was unable to dissociate the complexes, the degree of dissociation caused by heparin depended on both the chitosan chain length and the amount of chitosan used for complexation. When increasing the chitosan concentration, larger heparin concentrations were required for polyplex dissociation. Furthermore, increasing the chitosan chain length yielded more stable complexes. Varying the chitosan chain length thus provides a tool for controlling the ability of the polyplex to deliver therapeutic gene vectors to cells.  相似文献   

10.
β-Chitin was extracted from squid pens and deacetylated to β-chitosan. Both polymers were treated with tosyl chloride, potassium thioacetate and sodium methoxide to form 6-mercaptochitin and 6-mercaptochitosan, respectively. The degrees of substitution were lower for the chitosan derivatives and both types of polymer were less substituted than related polymers prepared from α-chitin. The thiolated polymers were reacted with MMA to form grafted copolymers. The solvent had an influence on the success of the polymerisation with the chitosan polymers giving highly grafted materials in aqueous acetic acid solution.  相似文献   

11.
The effects of thiophosphate substitutions on native siRNA gene silencing   总被引:4,自引:0,他引:4  
RNA mediated interference has emerged as a powerful tool in controlling gene expression in mammalian cells. We investigated the gene silencing properties of six thiophosphate substituted siRNAs (all based on a commercial luciferase medium silencer) compared to that of unmodified siRNA. We also examined the cytotoxicity and dose-response using several thiophosphate modified siRNAs with unmodified siRNA. Our results show that two thiophosphate siRNA sequences convert from medium to high silencers with the addition of four randomly placed thiophosphates. Both thiophosphate siRNAs have a statistically significant difference in luciferase gene silencing (5% and 6% activity) relative to the unmodified native medium silencer referred to as siRNA-2 (18% activity) and four other thiophosphate siRNAs that maintain their medium silencing capability. This indicates that specific thiophosphate substitutions may alter native siRNA function. Further, this shows that thiophosphate siRNAs with the same nucleotide sequence but with different sulfur modification positions have different silencing effects. Both the native siRNA and the thio siRNAs showed a concentration dependent relationship, i.e., with concentration increase, the luciferase gene silencing effect also increased. Confirming cytotoxicity experiments showed no significant changes when HeLa cells were treated with 10nM thiophosphate siRNAs over the course of several days. These results suggest that specific placement of thiophosphates could play an important role in the development of siRNAs as therapeutics by engineering in properties such as strength of binding, nuclease sensitivity, and ultimately efficacy.  相似文献   

12.
Small interfering RNA (siRNA) holds a great promise for the future of genomic medicine because of its highly sequence-specific gene silencing and universality in therapeutic target. The medical use of siRNA, however, has been severely hampered by the inherent physico-chemical properties of siRNA itself, such as low charge density, high structural stiffness and rapid enzymatic degradation; therefore, the establishment of efficient and safe siRNA delivery methodology is an essential prerequisite, particularly for systemic administration. For an efficient systemic siRNA delivery, it is a critical issue to obtain small and compact siRNA polyplexes with cationic condensing reagents including cationic polymers, because the size and surface properties of the polyplexes are major determinants for achieving desirable in vivo fate. Unfortunately, synthetic siRNA is not easily condensed with cationic polymers due to its intrinsic rigid structure and low spatial charge density. Accordingly, the loose siRNA polyplexes inevitably expose siRNA to the extracellular environment during systemic circulation, resulting in low therapeutic efficiency and poor biodistribution. In this review, we highlight the innovative approaches to increase the size of siRNA via structural modification of the siRNA itself. The attempts include several methodologies such as hybridization, chemical polymerization, and micro- and nano-structurization of siRNA. Due to its increased charge density and flexibility, the structured siRNA can produce highly condensed and homogenous polyplexes compared to the classical monomeric siRNA. As a result, stable and compact siRNA polyplexes can enhance serum stability and target delivery efficiency in vivo with desirable biodistribution. The review specifically aims to provide the recent progress of structural modification of siRNA. In addition, the article also briefly and concisely explains the improved physico-chemical properties of structured siRNA with respect to stability, condensation ability and gene silencing efficiency.  相似文献   

13.
The purpose of this study was to explore the potential of using cationic polyethylenimine (PEI) to deliver green fluorescent protein (GFP) to protozoan parasite Toxoplasma gondii. PEI/DNA polyplexes were formed using branched PEI and pEGFP-N1 plasmid with various N/P ratios that ranged from 5 to 50. With the increment of N/P ratio, the average size of formed PEI/DNA polyplexes determined by dynamic light scattering analysis decreased from 306 to 203nm, while the surface charge of polyplexes obtained by zeta potential measurements increased from 20.2 to 36.7mV. Gene transfection efficiency modulated by N/P ratio was determined, indicating PEI/DNA polyplexes were capable of transfecting parasites. The maximal GFP expression was observed 8h post-transfection using N/P ratio of 30. To demonstrate the infectivity and potential use of GFP-expressing T. gondii, transfected parasites were inoculated to the monolayer of human foreskin fibroblast (HFF) cells. GFP-expressing tachyzoites were observed in intracellular milieu of the infected HFF cells one day after the infection. After 12-day culture, the bradyzoites expressing GFP within cysts were clearly visualized extracellularly. Our results revealed that PEI can be harnessed as an effective and inexpensive reagent to construct GFP-expressing T. gondii which has potential uses such as the study of interconversion stages and antimicrobial drug screening.  相似文献   

14.
Various polymers were used as transfection factors for small interfering RNA (siRNA) to effectively suppress human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) gene in transgenic rice cells. Five kinds of polymers (PEI, PVA, PVP, and 8 and 20 kDa PEGs) were applied for delivery of siRNA with lipofectamine used as a control. In the cytotoxicity test, all polymers except 8 kDa PEG showed nontoxicity in relation to cell viability. For transfection efficiency, polyplexes composed of siRNA and PEG (20 kDa) did not significantly reduce production of intracellular hCTLA4Ig. On the other hand, siRNA + PEI polyplexes showed the most effective suppression efficiency with regards to production of intracellular hCTLA4Ig among all other polyplexes (PVA, PVP, and PEG (8 kDa)). Effects of molecular weight ratios of siRNA:PEI were investigated to obtain optimal transfection efficiency and avoid excessive damage to cells. PEI-based polyplexes with a 1:10 ratio of siRNA:PEI reduced production of intracellular hCTLA4Ig up to 70.6% without alteration of cell viability. These results demonstrate that PEI-based polyplexes are easy to prepare, inexpensive, non-toxic, and effective to deliver siRNA to transgenic plant cell cultures.  相似文献   

15.
近年来的研究发现,生物体内存在着大量的非编码RNA(non.codingRNAs,ncRNA),它们在染色质修饰、基因转录、RNA剪接和mRNA翻译等多种水平上参与了基因表达的调控。ncRNA中的小分子RNA如miRNA能够识别特定的目标mRNA,通过与mRNAs3’非翻译区结合,影响mRNA转录及蛋白质翻译;siRNA是RNA干扰的引发物,能够导致与dsRNA同源的mRNA降解,进而抑制相应基因表达;saRNA是目前最新发现的一种靶向目的基因启动子区的在转录水平激活目的基因表达的dsRNA。miRNA、siRNA和saRNA在生成机制、作用途径等方面关系密切,既区别又相互联系,小分子RNA的研究将是今后分子生物学的研究热点之一。  相似文献   

16.
Koukiekolo R  Sagan SM  Pezacki JP 《FEBS letters》2007,581(16):3051-3056
The RNA silencing pathway is an important component of the anti-viral immune response in eukaryotes, particularly in plants. In turn, many viruses have evolved mechanisms to evade or suppress this pathway. Tombusviruses such as the Carnation Italian ringspot virus (CIRV) express a 19kDa protein (p19) that is a suppressor of RNA silencing in infected plants. This protein acts as a dimer and binds specifically to short-interfering RNA (siRNA) through electrostatic interactions between charged residues in the binding cleft. Since pH and salt concentrations can vary widely from host to host, we have investigated the influence of these parameters on the siRNA binding activity of CIRV p19. Previously, we established a convenient fluorescence-based method for assaying CIRV p19:siRNA binding using Ni(2+)-NTA coated 96-well plates. Using this method, we observe that the CIRV p19 protein binds to siRNA with nanomolar affinity and that this binding is sensitive to pH and salt concentration. The pH-dissociation constant profile shows that CIRV p19:siRNA binding is dependent on three different apparent pK(a) values. The values extrapolated from the curve are 7.1, 8.0 and 10.6 that we interpret as the ionization of one or more histidine, cysteine and lysine residues, respectively. We find that the optimal suppression of RNA silencing by CIRV p19 occurs in the pH range from 6.2 to 7.6.  相似文献   

17.
Chitosan-based gene delivery systems are promising candidates for non-viral gene therapy. A wide range of chitosans has been studied to optimize the properties of the DNA-chitosan complexes to yield high transfection efficiencies. An important parameter to control is the polyplex stability to allow transport towards the cells, subsequent internalization and release of DNA intracellularly. The stability of the DNA-chitosan complexes was here studied after exposure to heparin and hyaluronic acid (HA) using atomic force microscopy (AFM) and ethidium bromide (EtBr) fluorescence assay. To study the effect of polycation chain length on the polyplex stability, chitosans with a degree of polymerization (DP) varying from approximately 10 to approximately 1000 were employed for DNA compaction. Whereas HA was unable to dissociate the complexes, the degree of dissociation caused by heparin depended on both the chitosan chain length and the amount of chitosan used for complexation. When increasing the chitosan concentration, larger heparin concentrations were required for polyplex dissociation. Furthermore, increasing the chitosan chain length yielded more stable complexes. Varying the chitosan chain length thus provides a tool for controlling the ability of the polyplex to deliver therapeutic gene vectors to cells.  相似文献   

18.
Although advances in molecular biology have allowed us to identify and describe many of the events associated with turning genes on, much less attention has generally been focussed on the related process of gene silencing. This is surprising as heritable gene inactivation plays an important role in determining cell lineage fates during development and defining their temporal order. Recent advances in the area of chromatin and chromosome organisation may have an impact on our understanding of cellular differentiation.  相似文献   

19.
Colorectal cancer (CRC) treatment is dramatically hampered by resistance to oxaliplatin alone or in the combination of irinotecan or 5-fluorouracil and leucovorin. This study aims to design and assess Chitosan/Hyaluronic Acid/Protamine sulfate (CS/HA/PS) polyplexes loaded with CRISPR plasmid for targeting a key gene in cancer drug resistance. Here, recent findings were considered to validate oxaliplatin-resistant CRC-related genes and systems biology approaches employed to detect the critical gene. The polyplexes were characterized according to particle size, zeta potential, and stability. Moreover, carrier toxicity and transfection efficiency were assessed on oxaliplatin-resistant HT-29 cells. The post-transfection evaluations were performed to confirm gene disruption-mediated CRISPR. Eventually, excision cross complementation group 1(ERCC1), a crucial member of the nucleotide excision repair pathway, was selected to be targeted using CRISPR/Cas9 to reverse oxaliplatin resistance in HT-29 cells. CS/HA/PS polyplexes containing CRISPR/Cas9 plasmid exhibited negligible toxicity and comparable transfection efficiency with Lipofectamine™. Following the efficient gene delivery, sequences in CRISPR/Cas9 target sites were altered, ERCC1 was downregulated, and drug sensitivity was successfully restored in oxaliplatin-resistant cells. Findings indicate that CS/HA/PS/CRISPR polyplexes provide a potential strategy for delivering cargo and targeting oxaliplatin resistance-related gene to manipulate drug resistance as a rising concern in cancer therapeutic approaches.  相似文献   

20.
Cell specific gene silencing effects of antisense oligodeoxynucleotide (AS-ODN), synthetic small interfering RNA (siRNA-S), and siRNA expressing plasmid (siRNA-P) were comparatively evaluated. Poly(ethylenimine) (PEI) and PEI-graft-poly(ethylene glycol)-folate (PEI-PEG-FOL) conjugate were used to form nanosized polyelectrolyte complexes with the above three nucleic acids coding for inhibition of green fluorescent protein (GFP) expression. The three nucleic acid complexes formulated with either PEI or PEI-PEG-FOL had comparable sizes and surface zeta potential values. Among the three inhibitory nucleic acids, siRNA-S, when complexed with PEI-PEG-FOL, exhibited the most dose-effective and fastest gene silencing effect for FOL receptor overexpressing KB cells, because the siRNA-S could be directly delivered, via FOL receptor-mediated endocytosis, into the cytoplasm compartment where the degradation processing of target GFP mRNA occurred in a sequence-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号