首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ferric form of truncated hemoglobin II from Thermobifida fusca (Tf-trHb) and its triple mutant WG8F-YB10F-YCD1F at neutral and alkaline pH, and in the presence of CN have been characterized by resonance Raman spectroscopy, electron paramagnetic resonance spectroscopy, and molecular dynamics simulations. Tf-trHb contains three polar residues in the distal site, namely TrpG8, TyrCD1 and TyrB10. Whereas TrpG8 can act as a potential hydrogen-bond donor, the tyrosines can act as donors or acceptors. Ligand binding in heme-containing proteins is determined by a number of factors, including the nature and conformation of the distal residues and their capability to stabilize the heme-bound ligand via hydrogen-bonding and electrostatic interactions. Since both the RR Fe–OH and Fe–CN frequencies are very sensitive to the distal environment, detailed information on structural variations has been obtained. The hydroxyl ligand binds only the WT protein giving rise to two different conformers. In form 1 the anion is stabilized by H-bonds with TrpG8, TyrCD1 and a water molecule, in turn H-bonded to TyrB10. In form 2, H-bonding with TyrCD1 is mediated by a water molecule. Unlike the OH ligand, CN binds both WT and the triple mutant giving rise to two forms with similar spectroscopic characteristics. The overall results clearly indicate that H-bonding interactions both with distal residues and water molecules are important structural determinants in the active site of Tf-trHb. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

2.
The genome of the cold-adapted bacterium Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct monomeric hemoglobins exhibiting a 2/2 ??-helical fold. In the present work, one of these hemoglobins is studied by resonance Raman, electronic absorption and electronic paramagnetic resonance spectroscopies, kinetic measurements, and different bioinformatic approaches. It is the first cold-adapted bacterial hemoglobin to be characterized. The results indicate that this protein belongs to the 2/2 hemoglobin family, Group II, characterized by the presence of a tryptophanyl residue on the bottom of the heme distal pocket in position G8 and two tyrosyl residues (TyrCD1 and TyrB10). However, unlike other bacterial hemoglobins, the ferric state, in addition to the aquo hexacoordinated high-spin form, shows multiple hexacoordinated low-spin forms, where either TyrCD1 or TyrB10 can likely coordinate the iron. This is the first example in which both TyrCD1 and TyrB10 are proposed to be the residues that are alternatively involved in heme hexacoordination by endogenous ligands.  相似文献   

3.
Oxygen affinity in heme-containing proteins is determined by a number of factors, such as the nature and conformation of the distal residues that stabilize the heme bound-oxygen via hydrogen-bonding interactions. The truncated hemoglobin III from Campylobacter jejuni (Ctb) contains three potential hydrogen-bond donors in the distal site: TyrB10, TrpG8, and HisE7. Previous studies suggested that Ctb exhibits an extremely slow oxygen dissociation rate due to an interlaced hydrogen-bonding network involving the three distal residues. Here we have studied the structural and kinetic properties of the G8(WF) mutant of Ctb and employed state-of-the-art computer simulation methods to investigate the properties of the O(2) adduct of the G8(WF) mutant, with respect to those of the wild-type protein and the previously studied E7(HL) and/or B10(YF) mutants. Our data indicate that the unique oxygen binding properties of Ctb are determined by the interplay of hydrogen-bonding interactions between the heme-bound ligand and the surrounding TyrB10, TrpG8, and HisE7 residues.  相似文献   

4.
The active site of the oxygen-avid truncated hemoglobin from Bacillus subtilis has been characterized by infrared absorption and resonance Raman spectroscopies, and the dynamics of CO rebinding after photolysis has been investigated by picosecond transient absorption spectroscopy. Resonance Raman experiments on the CO bound adduct revealed the presence of two Fe-CO stretching bands at 545 and 520 cm-1, respectively. Accordingly, two C-O stretching bands at 1924 and 1888 cm-1 were observed in infrared absorption and resonance Raman measurements. The very low C-O stretching frequency at 1888 cm-1 (corresponding to the extremely high RR stretching frequency at 545 cm-1) indicates unusually strong hydrogen bonding between CO and distal residues. On the basis of a comparison with other truncated hemoglobin it is envisaged that the two CO conformers are determined by specific interactions with the TrpG8 and TyrB10 residues. Mutation of TrpG8 to Leu deeply alters the hydrogen-bonding network giving rise mainly to a CO conformer characterized by a Fe-CO stretching band at 489 cm-1 and a CO stretching band at 1958 cm-1. Picosecond laser photolysis experiments carried out on the CO bound adduct revealed dynamical processes that take place within a few nanoseconds after photolysis. Picosecond dynamics is largely dominated by CO geminate rebinding and is consistent with strong H-bonding contributions of TyrB10 and TrpG8 to ligand stabilization.  相似文献   

5.
Molecular dynamic simulations have been performed for wild-type Hydrogenobacter thermophilus cytochrome c(552), a b-type variant of the protein, and the apo state with the heme prosthetic group removed. In the b-type variant, Cys 10 and Cys 13 were mutated to alanine residues, and so the heme group was no longer covalently bound to the protein. Two 8-ns simulations have been performed for each system at 298 and 360 K. The simulations of the wild-type protein at 298 K show a very close agreement with experimental NMR data. A fluxional process involving the side chain of Met 59, which coordinates to the heme iron, is observed in accord with proposals from NMR studies. Overall, the structure and dynamical behavior of the protein during the simulations of the b-type variant is closely similar to that of the wild-type protein. However, side chains in the heme-binding site show larger fluctuations in the b-type variant simulation at 360 K. In addition, structural changes are seen for a number of residues close to the heme group, particularly Gly 22 and Ser 51. The simulations of the apo state show significant conformational changes for residues 50-59. These residues form a loop region, which packs over the heme group in the wild-type protein and hydrogen bonds to the heme propionate groups. In the absence of heme, in the apo state simulations, these residues form short but persistent regions of beta-sheet secondary structure. These could provide nucleation sites for the conversion to amyloid fibrils.  相似文献   

6.
Cyanide is one of the few diatomic ligands able to interact with the ferric and ferrous heme-Fe atom. Here, the X-ray crystal structure of the cyanide derivative of ferric Mycobacterium tuberculosis truncated hemoglobin-N (M. tuberculosis trHbN) has been determined at 2.0 A (R-general = 17.8% and R-free = 23.5%), and analyzed in parallel with those of M. tuberculosis truncated hemoglobin-O (M. tuberculosis trHbO), Chlamydomonas eugametos truncated hemoglobin (C. eugametos trHb), and sperm whale myoglobin, generally taken as a molecular model. Cyanide binding to M. tuberculosis trHbN is stabilized directly by residue TyrB10(33), which may assist the deprotonation of the incoming ligand and the protonation of the outcoming cyanide. In M. tuberculosis trHbO and in C. eugametos trHb the ligand is stabilized by the distal pocket residues TyrCD1(36) and TrpG8(88), and by the TyrB10(20) - GlnE7(41) - GlnE11(45) triad, respectively. Moreover, kinetics for cyanide binding to ferric M. tuberculosis trHbN and trHbO and C. eugametos trHb, for ligand dissociation from the ferrous trHbs, and for the reduction of the heme-Fe(III)-cyanide complex have been determined, at pH 7.0 and 20.0 degrees C. Despite the different heme distal site structures and ligand interactions, values of the rate constant for cyanide binding to ferric (non)vertebrate heme proteins are similar, being influenced mainly by the presence in the heme pocket of proton acceptor group(s), whose function is to assist the deprotonation of the incoming ligand (i.e., HCN). On the other hand, values of the rate constant for the reduction of the heme-Fe(III)-cyanide (non)vertebrate globins span over several orders of magnitude, reflecting the different ability of the heme proteins considered to give productive complex(es) with dithionite or its reducing species SO(2)(-). Furthermore, values of the rate constant for ligand dissociation from heme-Fe(II)-cyanide (non)vertebrate heme proteins are very different, reflecting the different nature and geometry of the heme distal residue(s) hydrogen-bonded to the heme-bound cyanide.  相似文献   

7.
Truncated hemoglobins (trHbs) are heme proteins present in bacteria, unicellular eukaryotes, and higher plants. Their tertiary structure consists in a 2‐over‐2 helical sandwich, which display typically an inner tunnel/cavity system for ligand migration and/or storage. The microorganism Bacillus subtilis contains a peculiar trHb, which does not show an evident tunnel/cavity system connecting the protein active site with the solvent, and exhibits anyway a very high oxygen association rate. Moreover, resonant Raman results of CO bound protein, showed that a complex hydrogen bond network exists in the distal cavity, making it difficult to assign unambiguously the residues involved in the stabilization of the bound ligand. To understand these experimental results with atomistic detail, we performed classical molecular dynamics simulations of the oxy, carboxy, and deoxy proteins. The free energy profiles for ligand migration suggest that there is a key residue, GlnE11, that presents an alternate conformation, in which a wide ligand migration tunnel is formed, consistently with the kinetic data. This tunnel is topologically related to the one found in group I trHbs. On the other hand, the results for the CO and O2 bound protein show that GlnE11 is directly involved in the stabilization of the cordinated ligand, playing a similar role as TyrB10 and TrpG8 in other trHbs. Our results not only reconcile the structural data with the kinetic information, but also provide additional insight into the general behaviour of trHbs. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Resonance Raman (RR) spectroscopy and infrared spectroscopy have been used to characterize the three vibrational modes, CO and FeC stretching and FeCO bending, for carbon monoxide bound to reduced horseradish peroxidase, with the aid of 13CO and C18O isotope shifts. At high pH, one species, I, is observed, with nu FeC = 490 cm-1 and nu CO = 1932 cm-1. The absence of a band attributable to delta FeCO suggests a linear FeCO unit normal to the heme plane. The data were consistent with I having a strongly H-bonded proximal histidine, as shown by a comparison with imidazole and imidazolate adducts of FeIIPPDME(CO) (PPDME = protoporphyrin IX dimethyl ester), with nu FeC = 497 and 492 cm-1 and nu CO = 1960 and 1942 cm-1. At low pH an additional species, II, is observed, with nu FeC = 537 cm-1, nu CO = 1904 cm-1, and delta FeCO = 587 cm-1; it is attributed to FeCO that is H bonded to a protonated distal histidine, the H bond strongly lowering nu CO and raising nu FeC. The appearance of delta FeCO in the RR spectrum suggests that the FeCO unit in II is tilted with respect to the heme plane. At low pH, the population of I and II depends on the CO concentration. I dominates at low CO/protein levels but is replaced by II as the amount of CO is increased. This behavior is suggested to arise from secondary binding of CO, which induces a conformation change involving the distal residues of the heme pocket.  相似文献   

9.
Resonance Raman and infrared spectra and the CO dissociation rates (k(off)) were measured in Coprinus cinereus peroxidase (CIP) and several mutants in the heme binding pocket. These mutants included the Asp245Asn, Arg51Leu, Arg51Gln, Arg51Asn, Arg51Lys, Phe54Trp, and Phe54Val mutants. Binding of CO to CIP produced different CO adducts at pH 6 and 10. At pH 6, the bound CO is H-bonded to the protonated distal His55 residue, whereas at alkaline pH, the vibrational signatures and the rate of CO dissociation indicate a distal side which is more open or flexible than in other plant peroxidases. The distal Arg51 residue is important in determining the rate of dissociation in the acid form, increasing by 8-17-fold in the Arg51 mutants compared to that for the wild-type protein. Replacement of the distal Phe with Trp created a new acid form characterized by vibrational frequencies and k(off) values very similar to those of cytochrome c peroxidase.  相似文献   

10.
List F  Bocola M  Haeger MC  Sterner R 《Biochemistry》2012,51(13):2812-2818
The glutamine amidotransferase (GATase) family comprises enzyme complexes which consist of glutaminase and synthase subunits that catalyze in a concerted reaction the incorporation of nitrogen within various metabolic pathways. An important feature of GATases is the strong stimulation of glutaminase activity by the associated synthase. To understand the mechanism of this tight activity regulation, we probed by site-directed mutagenesis four residues of the glutaminase subunit TrpG from anthranilate synthase that are located between the catalytic Cys-His-Glu triad and the synthase subunit TrpE. In order to minimize structural perturbations induced by the introduced exchanges, the amino acids from TrpG were substituted with the corresponding residues of the closely related glutaminase HisH from imidazole glycerol phosphate synthase. Steady-state kinetic characterization showed that, in contrast to wild-type TrpG, two TrpG variants with single exchanges constitutively hydrolyzed glutamine in the absence of TrpE. A reaction assay performed with hydroxylamine as a stronger nucleophile replacing water and a filter assay with radiolabeled glutamine indicated that the formation of the thioester intermediate is the rate-limiting step of constitutive glutamine hydrolysis. Molecular dynamics simulations with wild-type TrpG and constitutively active TrpG variants suggest that the introduced amino acid exchanges result in a distance reduction between the active site Cys-His pair, which facilitates the deprotonation of the sulfhydryl group of the catalytic cysteine and thus enables its nucleophilic attack onto the carboxamide group of the glutamine side chain. We propose that native TrpG in the anthranilate synthase complex is activated by a similar mechanism.  相似文献   

11.
The crystal structure of the cyano-met form of Mt-trHbO revealed two unusual distal residues Y(CD1) and W(G8) forming a hydrogen-bond network with the heme-bound ligand [Milani, M., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 5766-5771]. W(G8) is an invariant residue in group II and group III trHbs and has no counterpart in other globins. A previous study reported that changing Y(CD1) for a Phe causes a significant increase in the O2 combination rate, but almost no change in the O2 dissociation rate [Ouellet, H., et al. (2003) Biochemistry 42, 5764-5774]. Here we investigated the role of the W(G8) in ligand binding by using resonance Raman spectroscopy, stopped-flow spectrophotometry, and X-ray crystallography. For this purpose, W(G8) was changed, by site-directed mutagenesis, to a Phe in both the wild-type protein and the mutant Y(CD1)F to create the single mutant W(G8)F and the double mutant Y(CD1)F/W(G8)F, respectively. Resonance Raman results suggest that W(G8) interacts with the heme-bound O2 and CO, as evidenced by the increase of the Fe-O2 stretching mode from 559 to 564 cm-1 and by the lower frequency of the Fe-CO stretching modes (514 and 497 cm-1) compared to that of the wild-type protein. Mutation of W(G8) to Phe indicates that this residue controls ligand binding, as evidenced by a dramatic increase of the combination rates of both O2 and CO. Also, the rate of O2 dissociation showed a 90-1000-fold increase in the W(G8)F and Y(CD1)F/W(G8)F mutants, that is in sharp contrast with the values obtained for the other distal mutants Y(B10)F and Y(CD1)F [Ouellet, H., et al. (2003) Biochemistry 42, 5764-5774]. Taken together, these data indicate a pivotal role for the W(G8) residue in O2 binding and stabilization.  相似文献   

12.
The heme-regulated phosphodiesterase from Escherichia coli (Ec DOS), which is a heme redox-dependent enzyme, is active with a ferrous heme but inactive with a ferric heme. Global structural changes including axial ligand switching and a change in the rigidity of the FG loop accompanying the heme redox change may be related to the dependence of Ec DOS activity on the redox state. Axial ligands such as CO, NO, and O2 act as inhibitors of Ec DOS because they interact with the ferrous heme complex. The X-ray crystal structure of the isolated heme-bound domain (Ec DosH) shows that Leu99, Phe113 and Leu115 indirectly and directly form a hydrophobic triad on the heme plane and that they should be located at or near the ligand access channel of the heme iron. We generated L99T, L99F, L115T, and L115F mutants of Ec DosH and examined their physicochemical characteristics, including auto-oxidation rates, O2 and CO binding kinetics, and redox potentials. The Fe(III) complex of the L115F mutant was unstable and had a Soret absorption spectrum located 5 nm lower than those of the wild-type and other mutants. Auto-oxidation rates of the mutants (0.049-0.33 min(-1)) were much higher than that of the wild-type (0.0063 min(-1)). Furthermore, the redox potentials of the former three mutants (23.1-34.6 mV versus SHE) were also significantly lower than that of the wild-type (63.9 mV versus SHE). Interaction between O2 and the L99F mutant was different from that in the wild-type, whereas CO binding rates of the mutants were similar to those of the wild-type. Thus, it appears that Leu99 and Leu115 are critical for determining the characteristics of heme iron. Finally, we discuss the roles of these amino-acid residues in the heme electronic states.  相似文献   

13.
Vibrational frequencies associated with FeC and CO stretching and FeCO bending modes have been determined via resonance Raman (RR) and infrared (IR) spectroscopy for cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn; Trp-191---Phe) and distal (Trp-51----Phe; Arg-48----Leu and Lys) side of the heme. The data were analyzed with the aid of a recently established correlation between nu FeC and nu CO, which can be used to distinguish between back-bonding and axial ligand donor effects. At high pH all adducts showed essentially the same vibrational pattern (form I') with nu FeC approximately 505 cm-1, nu CO approximately 1948 cm-1, and delta FeCO (weak RR band) approximately 576 cm-1. These frequencies are very similar to those shown by the myoglobin CO adduct and imply a "normal" H-bond of the proximal histidine. At pH 7 (pH 6 for Asn-235 and Leu-48), different forms are seen for different proteins: form I (nu FeC approximately 500 cm-1, nu CO = 1922-1941 cm-1, and delta FeCO approximately 580 cm-1, very weak) in the case of CCP(MI) and Phe-191, as well as bakers' yeast CCP, or form II (nu FeC approximately 530 cm-1, nu CO = 1922-1933 cm-1, and delta FeCO = 585 cm-1, moderately strong) for Asn-235 and Phe-51.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Monomeric hemoglobin from the trematode Paramphistomum epiclitum displays very high oxygen affinity (P(50)<0.001 mm Hg) and an unusual heme distal site containing tyrosyl residues at the B10 and E7 positions. The crystal structure of aquo-met P. epiclitum hemoglobin, solved at 1.17 A resolution via multiwavelength anomalous dispersion techniques (R-factor=0.121), shows that the heme distal site pocket residue TyrB10 is engaged in hydrogen bonding to the iron-bound ligand. By contrast, residue TyrE7 is unexpectedly locked next to the CD globin region, in a conformation unsuitable for heme-bound ligand stabilisation. Such structural organization of the E7 distal residue differs strikingly from that observed in the nematode Ascaris suum hemoglobin (bearing TyrB10 and GlnE7 residues), which also displays very high oxygen affinity. The oxygenation and carbonylation parameters of wild-type P. epiclitum Hb as well as of single- and double-site mutants, with residue substitutions at positions B10, E7 and E11, have been determined and are discussed here in the light of the protein atomic resolution crystal structure.  相似文献   

15.
Conserved phenylalanine 35 is one of the hydrophobic patch residues on the surface of cytochrome b5 (cyt b5). This patch is partially exposed on the surface of cyt b5 while its buried face is in direct van der Waals' contact with heme b. Residues Phe35 and Phe/Tyr74 also form an aromatic channel with His39, which is one of the axial ligands of heme b. By site-directed mutagenesis we have produced three mutants of cyt b5: Phe35-->Tyr, Phe35-->Leu, and Phe35-->His. We found that of these three mutants, the Phe35-->Tyr mutant displays abnormal properties. The redox potential of the Phe35-->Tyr mutant is 66 mV more negative than that of the wild-type cyt b5 and the oxidized Phe35-->Tyr mutant is more stable towards thermal and chemical denaturation than wild-type cyt b5. In this study we studied the most interesting mutant, Phe35-->Tyr, by X-ray crystallography, thermal denaturation, CD and kinetic studies of heme dissociation to explore the origin of its unusual behaviors. Analysis of crystal structure of the Phe35-->Tyr mutant shows that the overall structure of the mutant is basically the same as that of the wild-type protein. However, the introduction of a hydroxyl group in the heme pocket, and the increased van der Waals' and electrostatic interactions between the side chain of Tyr35 and the heme probably result in enhancement of stability of the Phe35-->Tyr mutant. The kinetic difference of the heme trapped by the heme pocket also supports this conclusion. The detailed conformational changes of the proteins in response to heat have been studied by CD for the first time, revealing the existence of the folding intermediate.  相似文献   

16.
Ec DOS is a heme-based gas sensor enzyme that catalyzes conversion from cyclic-di-GMP to linear-di-GMP in response to gas molecules, such as oxygen, CO and NO. Ec DOS contains an N-terminal heme-binding PAS domain and C-terminal phosphodiesterase domain. Based on crystal structures of the isolated heme-binding domain, it is suggested that the FG loop is involved in intra-molecular signal transduction to the catalytic domain. We generated nine full-length proteins mutated at ionic and non-ionic polar residues between positions 83 and 96 corresponding to the F-helix and FG loop, and examined the heme binding properties, autoxidation rates, and catalytic activities of mutant proteins. N84A and R85A mutant proteins displayed lower heme binding affinities, consistent with the finding that Asn84 interacts with propionate of protoporphyrin IX, and Arg85 with Asp40 on the heme proximal side. Autoxidation rates (0.058-0.54 min−1) of R91A, S96A and K89A/R91A/E93A mutant proteins were significantly higher than that (0.0053 min−1) of wild-type protein, suggesting that these residues in the FG loop form heme distal architecture conferring stability to the Fe(II)-O2 complex. Catalytic activities of N84A and R85A mutant proteins with low heme affinity were significantly higher than those of wild-type protein in the absence of gas molecules. Accordingly, we propose that loss of heme binding enhances basal catalysis without the gas molecule, consistent with previous reports on heme inhibition of Ec DOS catalysis.  相似文献   

17.
Resonance Raman studies have uncovered puzzling complexities in the structures of NO adducts of heme proteins. Although CO adducts of heme proteins obey well-behaved anti-correlations between Fe–C and C–O stretching frequencies, which reflect changes in backbonding induced by distal H-bonding residues, the corresponding NO data are scattered. This scatter can be traced to distal influences, since protein-free NO–hemes do show well-behaved anti-correlations. Why do distal effects produce irregularities in νFeN/νNO plots but not in νFeC/νCO plots? We show via density functional theory (DFT) computations on model systems that the response to distal H-bonding differs markedly when the NO acceptor atom is N versus O. Backbonding is augmented by H-bonding to O, but the effect of H-bonding to N is to weaken both N–O and N–Fe bonds. The resulting downward deviation from the νFeN/νNO backbonding line increases with increasing H-bond strength. This effect explains the deviations observed for a series of myoglobin variants, in which the strength of distal H-bonding is modulated by distal pocket residue substitutions. Most of the data follow a positive νFeN/νNO correlation with the same slope as that calculated for H-bonding to N. Such deviations are not observed for CO adducts, because the CO π* orbital is unoccupied, and serves as a delocalized acceptor of H-bonds. H-bonding to N primes NO–heme for reduction to the HNO adduct, a putative intermediate in NO-reducing enzymes.  相似文献   

18.
Resonance Raman (RR) spectra are reported for CO-bound cytochrome c peroxidase (CCP). At low pH, two forms are observed: form II, with nu Fe-C = 530 cm-1 and delta FeCO = 585 cm-1, and form I, with nu Fe-C = 495 cm-1 and no detectable delta FeCO. They appear to have coincident nu CO infrared bands, at 1922 cm-1. These low-pH forms, similar to those observed for horseradish peroxidase (HRP), are attributed to tilted, H-bonded CO and perpendicular CO, respectively. The frequencies differ between the two proteins, a weaker H bond to CO being indicated for CCP. As with HRP, the equilibrium between forms I and II is shifted toward the latter at increasing CO concentrations, suggesting that secondary binding of CO perturbs the distal residues. At high pH [8.4, tris(hydroxymethyl)aminomethane buffer] the form II fraction converts to another form, II', with nu FeC = 503 cm-1, delta FeCO = 575 cm-1, and nu CO = 1948 cm-1; a tilted, non-H-bonded geometry is suggested. If phosphate buffer is used, however, form II (H bonded) persists at pH 8.4. This result establishes a role for phosphate in stabilizing the H-bonded form of the enzyme; it is suggested that phosphate binds near the distal imidazole and substantially increases its pKa. The conformational state is also influenced by aging. Fresh protein contains purely high spin FeIII heme, as monitored by the high-frequency RR spectrum, and yields form II almost exclusively at elevated CO concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
YddV from Escherichia coli (Ec) is a novel globin-coupled heme-based oxygen sensor protein displaying diguanylate cyclase activity in response to oxygen availability. In this study, we quantified the turnover numbers of the active [Fe(III), 0.066 min(-1); Fe(II)-O(2) and Fe(II)-CO, 0.022 min(-1)] [Fe(III), Fe(III)-protoporphyrin IX complex; Fe(II), Fe(II)-protoporphyrin IX complex] and inactive forms [Fe(II) and Fe(II)-NO, <0.01 min(-1)] of YddV for the first time. Our data indicate that the YddV reaction is the rate-determining step for two consecutive reactions coupled with phosphodiesterase Ec DOS activity on cyclic di-GMP (c-di-GMP) [turnover number of Ec DOS-Fe(II)-O(2), 61 min(-1)]. Thus, O(2) binding and the heme redox switch of YddV appear to be critical factors in the regulation of c-di-GMP homeostasis. The redox potential and autoxidation rate of heme of the isolated heme domain of YddV (YddV-heme) were determined to be -17 mV versus the standard hydrogen electrode and 0.0076 min(-1), respectively. The Fe(II) complexes of Y43A and Y43L mutant proteins (residues at the heme distal side of the isolated heme-bound globin domain of YddV) exhibited very low O(2) affinities, and thus, their Fe(II)-O(2) complexes were not detected on the spectra. The O(2) dissociation rate constant of the Y43W protein was >150 s(-1), which is significantly larger than that of the wild-type protein (22 s(-1)). The autoxidation rate constants of the Y43F and Y43W mutant proteins were 0.069 and 0.12 min(-1), respectively, which are also markedly higher than that of the wild-type protein. The resonance Raman frequencies representing ν(Fe-O(2)) (559 cm(-1)) of the Fe(II)-O(2) complex and ν(Fe-CO) (505 cm(-1)) of the Fe(II)-CO complex of Y43F differed from those (ν(Fe-O(2)), 565 cm(-1); ν(Fe-CO), 495 cm(-1)) of the wild-type protein, suggesting that Tyr43 forms hydrogen bonds with both O(2) and CO molecules. On the basis of the results, we suggest that Tyr43 located at the heme distal side is important for the O(2) recognition and stability of the Fe(II)-O(2) complex, because the hydroxyl group of the residue appears to interact electrostatically with the O(2) molecule bound to the Fe(II) complex in YddV. Our findings clearly support a role of Tyr in oxygen sensing, and thus modulation of overall conversion from GTP to pGpG via c-di-GMP catalyzed by YddV and Ec DOS, which may be applicable to other globin-coupled oxygen sensor enzymes.  相似文献   

20.
Two three-dimensional (3D) models of human cytochrome P450 26A1 (CYP26A1) were constructed using the programs Modeller and Sybyl-GeneFold, respectively. After refinement by molecular mechanics and molecular dynamics (MD) simulations, the two models were validated by structure analysis-validation online server. Subsequently, a flexible docking study was performed on the model constructed by GeneFold with the potent and specific inhibitor R115866 to examine the enzyme–inhibitor interactions. From the docking results, we can see R115866 interacts with amino acid residues at the active site by multiple hydrophobic interactions including the side chains of His111, Trp112, Ser115, Val116, Leu125, Ser126, Leu221, Phe222, Glu296, Phe299, Gly300, Glu303, Thr304, Pro371 and the cofactor heme. Trp112 and Thr304 form hydrogen bonds with R115866 and play important roles in stabilising the complex. This constructed CYP26A1 model may provide an opportunity to understand the action mode of the enzyme and could be useful in designing novel retinoic acid metabolism blocking agents (RAMBAs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号