共查询到20条相似文献,搜索用时 0 毫秒
1.
T M Connolly D B Wilson T E Bross P W Majerus 《The Journal of biological chemistry》1986,261(1):122-126
The phosphoinositides are metabolized by phospholipase C in response to hormone or agonist stimulation in many cell types to produce diglyceride and water-soluble inositol phosphates. We have recently shown that the phospholipase C reaction products include cyclic phosphate esters of inositol. One of these, inositol 1, 2-cyclic 4,5-trisphosphate, is active in promoting Ca2+ mobilization in platelets and in inducing changes in conductance in Limulus photoreceptors similar to those produced by light (Wilson, D. B., Connolly, T. M., Bross, T. E., Majerus, P. W., Sherman, W. R., Tyler, A., Rubin, L. J., and Brown, J. E. (1985) J. Biol. Chem. 260, 13496-13501. In the current study, we have examined the metabolism of the inositol phosphates. We find that both cyclic and non-cyclic inositol trisphosphates are metabolized by inositol 1,4,5-trisphosphate 5-phosphomonoesterase, to inositol 1,2-cyclic bisphosphate and inositol 1,4-bisphosphate, respectively. However, the apparent Km of the enzyme for the cyclic substrate is approximately 10-fold higher than for the non-cyclic substrate. These inositol bisphosphates are more slowly degraded to inositol 1,2-cyclic phosphate and inositol 1-phosphate, respectively. Inositol 1,2-cyclic phosphate is then hydrolyzed to inositol 1-phosphate, which in turn is degraded to inositol and inorganic phosphate by inositol 1-phosphate phosphatase. The human platelet inositol 1,2-cyclic phosphate hydrolase enzyme and a similar rat kidney hydrolase do not utilize the cyclic polyphosphate esters of inositol as substrates. These results suggest that the inositol cyclic phosphates and the non-cyclic inositol phosphates are metabolized separately by phosphatases to cyclic and non-cyclic inositol monophosphates. The cyclic monophosphate is then converted to inositol 1-phosphate by a cyclic hydrolase. We suggest that the enzymes that metabolize the inositol phosphates may serve to regulate cellular responses to these compounds. 相似文献
2.
Limulus ventral eye. Physiological properties of photoreceptor cells in an organ culture medium
下载免费PDF全文

《The Journal of general physiology》1978,72(4):539-563
Ventral photoreceptor cells bathed in an organ culture medium typically have resting potentials of -85 mV and membrane resistances of 35 Momega and, when dark-adapted, exhibit large potential fluctuations (LPFs) of 60 mV and small potential fluctuations (SPFs) of less than 30 mV. LPFs appear to be regenerative events triggered by SPFs, the well-known quantum bumps. In the dark, SPFs and LPFs occur spontaneously. At intensities near threshold, the rate of occurrence is directly proportional to light intensity, indicating that SPFs and LPFs are elicited by single photon events. At higher intensities, SPFs and LPFs sum to produce a receptor potential that is graded over approximately a 9-log-unit range of light intensity. Amplitude histograms of the discrete potential waves are bimodal, reflecting the SPF and LPF populations. Histograms of current waves are unimodal. SPFs and LPFs are insensitive to 1 microgram tetrodotoxin. I-V characteristics show initial inward currents of approximately 15 nA for voltage clamps to - 40 mV and steady-state outward currents for all clamp potentials. Photoreceptor cells bathed in organ culture medium retain these properties for periods of at least 75 days. 相似文献
3.
Isolation and characterization of two different forms of inositol phospholipid-specific phospholipase C from rat brain 总被引:12,自引:0,他引:12
Two different forms of inositol phospholipid-specific phospholipase C (PLC) have been purified 2810- and 4010-fold, respectively, from a crude extract of rat brain. The purification procedures consisted of chromatography of both enzymes on Affi-Gel blue and cellulose phosphate, followed by three sequential high performance liquid chromatography steps, which were different for the two enzymes. The resultant preparations each contained homogeneous enzyme with a Mr of 85,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One of these enzymes (PLC-II) was found to hydrolyze phosphatidyl-inositol 4,5-bisphosphate (PIP2) at a rate of 15.3 mumol/min/mg of protein and also phosphatidylinositol 4-monophosphate and phosphatidylinositol (PI) at slower rates. For hydrolysis of PI, this enzyme was activated by an acidic pH and a high concentration of Ca2+ and showed a Vmax value of 19.2 mumol/min/mg of protein. The other enzyme (PLC-III) catalyzed hydrolysis of PIP2 preferentially at a Vmax rate of 12.9 mumol/min/mg of protein and catalyzed that of phosphatidylinositol 4-monophosphate slightly. The rate of PIP2 hydrolysis by this enzyme exceeded that of PI under all conditions tested. Neither of these enzymes had any activity on phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, or phosphatidic acid. These two enzymes showed not only biochemical but also structural differences. Western blotting showed that antibodies directed against PLC-II did not react with PLC-III. Furthermore, the two enzymes gave different peptide maps after digestion with alpha-chymotrypsin or Staphylococcus aureus V8 protease. These results suggest that these two forms of PLC belong to different families of PLC. 相似文献
4.
Cultured fibroblasts (REF52 cells) were employed to investigate phospholipid degradation in response to vasopressin (VP) treatment. There have been few studies in fibroblasts which characterize the pattern and relationship of phosphatidylinositol 4,5-bisphosphate (PIP2) and non-phosphoinositide hydrolysis elicited by VP. Here we demonstrate that VP-induced PIP2 hydrolysis is closely accompanied by phosphatidylcholine (PC) degradation by phospholipase D. Cells prelabeled with [3H]arachidonic acid showed rapid formation and diminution of [3H]diacylglycerol (DG) (5-15s) when treated with VP; this was accompanied by a reduction in polyphosphoinositide radioactivity. Radiolabeled inositol trisphosphate was generated with a similar time frame. In cells prelabeled with [3H]myristic acid, which is predominantly incorporated into cellular PC, VP elicited the generation of [3H]myristoyl phosphatidate (PA) as early as 15 s, in the absence of an increase in labeled DG. In the presence of ethanol the pattern of [3H]myristoyl phosphatidylethanol (PEt) formation coincided with [3H]myristoyl-PA formation in the absence of ethanol. PEt was similarly formed, in response to VP treatment, in cells prelabeled with 1-O-[3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine. The formation of PC-derived [3H]myristoyl-DG was characterized by a lag period of approximately 1 min, after which DG increased steadily over a 10-min period. Biphasic formation of DG was observed in cells prelabeled with [3H]arachidonic acid, and the formation of [3H]PA occurred in an uninterrupted fashion. Two protein kinase C agonists, phorbol diester and dioctanoylglycerol, elicited the formation of [3H]myristoyl-PEt. The inclusion of staurosporine, a protein kinase C inhibitor, blocked VP-induced [3H]myristoyl-PEt formation by 88%. These data demonstrate that VP elicits the coordinated hydrolysis of PIP2 by phospholipase C and PC hydrolysis by phospholipase D. This event results in the prolonged generation of PA and biphasic formation of DG. From the time courses shown, we hypothesize that the early generation of PA, heretofore ascribed to products of the polyphosphoinositide cycle, are in part derived from PC by phospholipase D. 相似文献
5.
Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. 总被引:13,自引:0,他引:13
下载免费PDF全文

We directly manipulated the levels of PtdIns, PtdInsP and PtdInsP2 in digitonin-treated adrenal chromaffin cells with a bacterial phospholipase C (PLC) from Bacillus thuringiensis and by removal of ATP. The PtdIns-PLC acted intracellularly to cause a large decrease in [3H]inositol- or [32P]phosphate-labelled PtdIns, but did not directly hydrolyse PtdInsP or PtdInsP2. [3H]PtdInsP and [3H]PtdInsP2 levels declined markedly, probably because of the action of phosphatases in the absence of synthesis. Removal of ATP also caused marked decreases in [3H]PtdInsP and [3H]PtdInsP2. The decrease in polyphosphoinositide levels by PtdIns-PLC treatment or ATP removal was reflected by the inhibition of the production of inositol phosphates upon subsequent activation of the endogenous PLC by Ca2(+)-dependent catecholamine secretion from permeabilized cells was strongly inhibited by PtdIns-PLC treatment and by ATP removal. Ca2(+)-dependent secretion was similarly correlated with the sum of PtdInsP and PtdInsP2 when the level of these lipids was changed by either manipulation. PtdIns-PLC inhibited only the ATP-dependent component of secretion and did not affect ATP-dependent secretion. Both PtdIns-PLC and ATP removal inhibited the late slow phase of secretion, but had little effect on the initial rapid phase. Although we found a tight correlation between polyphosphoinositide levels and secretion, endogenous phospholipase C activity (stimulated by Ca2+, guanine nucleotides and related agents) was not correlated with secretion. Additional experiments indicated that neither the products of the PtdIns-PLC reaction (diacylglycerol and InsP1) nor the inability to generate products by subsequent activation of the endogenous PLC is likely to account for the inhibition of secretion. Incubation of permeabilized cells with neomycin in the absence of ATP maintained the level of polyphosphoinositides and more than doubled subsequent Ca2(+)-dependent secretion. The data suggest that: (1) Ca2(+)-dependent secretion has a requirement for the presence of inositol phospholipids; (2) the enhancement of secretion by ATP results in part from increased polyphosphoinositide levels; and (3) the role for inositol phospholipids in secretion revealed in these experiments is independent of their being substrates for the generation of diacylglycerol and InsP3. 相似文献
6.
The effects of mastoparan on the carrot cell plasma membrane polyphosphoinositide phospholipase C. 总被引:6,自引:1,他引:6
下载免费PDF全文

When [3H]inositol-labeled carrot (Daucus carota L.) cells were treated with 10 or 25 microM wasp venom peptide mastoparan or the active analog Mas-7 there was a rapid loss of more than 70% of [3H]phosphatidylinositol-4-monophosphate (PIP) and [3H]phosphatidylinositol-4,5-bisphosphate (PIP2) and a 3- and 4-fold increase in [3H]inositol-1,4-P2 and [3H]inositol-1,4,5-P3, respectively. The identity of [3H]inositol-1,4,5-P3 was confirmed by phosphorylation with inositol-1,4,5-P3 3-kinase and co-migration with inositol-1,3,4,5-P4. The changes in phosphoinositides were evident within 1 min. The loss of [3H]PIP was evident only when cells were treated with the higher concentrations (10 and 25 microM) of mastoparan or Mas-7. At 1 microM Mas-7, [3H]PIP increased. The inactive mastoparan analog Mas-17 had little or no effect on [3H]PIP or [3H]PIP2 hydrolysis in vivo. Neomycin (100 microM) inhibited the uptake of Mas-7 and thereby inhibited the Mas-7-stimulated hydrolysis of [3H]PIP and [3H]PIP2. Plasma membranes isolated from mastoparan-treated cells had increased PIP-phospholipase C (PLC) activity. However, when Mas-7 was added to isolated plasma membranes from control cells, it had no effect on PIP-PLC activity at low concentrations and inhibited PIP-PLC at concentrations greater than 10 microM. In addition, guanosine-5'-O-(3-thiotriphosphate) had no effect on the PIP-PLC activity when added to plasma membranes isolated from either the Mas-7-treated or control cells. The fact that Mas-7 did not stimulate PIP-PLC activity in vitro indicated that the Mas-7-induced increase in PIP-PLC in vivo required a factor that was lost from the membrane during isolation. 相似文献
7.
Regulation of phospholipase C (PLC) coupled with a G-protein was studied with Swiss 3T3 cells permeabilized by digitonin. In permeabilized cells, activation of phospholipase C required millimolar concentrations of ATP in addition to a G-protein activator, AlF4- or nonhydrolysable GTP analogues. To determine the mechanism of the action of ATP, we examined the effects of ATP analogues. ATP gamma S directly activated phospholipase C in the presence or absence of AlF4-. On the other hand, neither beta,gamma-methylene ATP nor adenyl-5'-yl imidodiphosphate nor ADP beta S could support the AlF4(-)-dependent activation of phospholipase C. The action of ATP gamma S was not through the substrate supply for phospholipase C, because ATP gamma S did not augment the levels of PIP2 or PIP in permeabilized cells. These results suggested the significance of the gamma-phosphate group of ATP and/or phosphorylation by ATP in the activation of phospholipase C by a putative G-protein. 相似文献
8.
Purification and characterization of phosphatidylinositol-specific phospholipase C from bovine platelets 总被引:8,自引:0,他引:8
Phosphatidylinositol-specific phospholipase C was purified to homogeneity from soluble fraction of bovine platelets by ammonium sulfate fractionation, hydrophobic chromatography, DEAE ion exchange chromatography and gel filtration. The purified enzyme has a narrow pH optimum ranging from 6.5 to 7.5 and the molecular weight of the enzyme was estimated to be 143,000 by sodium dodecyl sulfate slab gel electrophoresis. The purified enzyme requires Ca2+ strictly for activity, which was markedly enhanced in the presence of arachidonate. No enhancement of the activity was observed in the presence of purified calmodulin. The activity was markedly inhibited in the presence of quinacrine but no inhibition by indomethacin was observed. 相似文献
9.
Two forms (mPLC-I, mPLC-II) of phosphoinositide-specific phospholipase C have been purified, 1494- and 1635-fold, respectively, from plasma membranes of human platelets. Purified mPLC-I and mPLC-II had estimated molecular weights by gel filtration and sodium dodecyl sulfate-polyacrylamide gels of 69,000 and 63,000, respectively. Two cytosolic forms (PLC-I and PLC-II) of phosphoinositide-specific phospholipase C were also resolved on a phenyl-Sepharose column. The major cytosolic form present in outdated platelets, PLC-II, was purified to homogeneity by chromatography on Fast Q-Sepharose, cellulose phosphate, heparin-agarose, phenyl-Sepharose, Superose 12, DEAE-5PW, and hydroxylapatite. Purified PLC-II had a molecular weight of 57,000 on sodium dodecyl sulfate-polyacrylamide gels. mPLC-I, mPLC-II, and PLC-II hydrolyzed both PI and PIP2. The Vmax for PIP2 hydrolysis was similar for all three forms of PLC and was approximately 5-fold greater than for PI hydrolysis. The Km for PIP2 hydrolysis was also similar for the three enzymes. In contrast, the Km for PI hydrolysis by PLC-II was 10-fold lower than by mPLC-I and mPLC-II. In addition, antibody prepared against PLC-II did not cross-react with either mPLC-I or mPLC-II. These data indicate that platelets contain membrane-associated phosphoinositide-specific phospholipases C that are distinct from at least one cytosolic form (PLC-II) of the enzyme. 相似文献
10.
Inhibition by cyclic AMP of guanine nucleotide-induced activation of phosphoinositide-specific phospholipase C in human platelets 总被引:4,自引:0,他引:4
Phosphoinositide-specific phospholipase C (PLC) activity of human platelet membranes was activated by the nonhydrolyzable guanine nucleotide GTP gamma S. This activation did not occur in either membranes prepared from dibutyryl cyclic AMP-pretreated platelets (A-membranes) or those prepared from untreated cells and subsequently incubated with cyclic AMP (cAMP) (B-membranes). This cAMP-mediated inhibition was abolished in the presence of inhibitors of cAMP-dependent protein kinase (A-kinase), suggesting that the inhibition was due to phosphorylation of (a) protein component(s). No significant differences were observed in the basal PLC activity and the extent of pertussis toxin-catalyzed ADP-ribosylation among control membranes and the two types of phosphorylated membranes (A- and B-membranes). GTP-binding activities of Gs, Gi and GTP-binding proteins of lower molecular masses were not altered by the phosphorylation of the membranes. These findings suggest that a GTP-binding protein is involved in the GTP gamma S-mediated activation of PLC and that cAMP (plus A-kinase) inhibits this activation by phosphorylating a membrane protein (probably a 240-kDa protein), rather than the GTP-binding protein or PLC itself. It is likely that this phosphorylation uncouples the GTP-binding protein from PLC. 相似文献
11.
Phosphatidylinositol-specific phospholipase C (PtdIns-PLC) of Bacillus cereus catalyzes the conversion of PtdIns to inositol cyclic 1:2-phosphate and diacylglycerol. NIH 3T3, Swiss mouse 3T3, CV-1, and Cos-7 cells were transfected with a cDNA encoding this enzyme, and the metabolic and cellular consequences were investigated. Overexpression of PtdIns-PLC enzyme activity was associated with elevated levels of inositol cyclic 1:2-phosphate (2.5-70-fold), inositol 1-phosphate (2-20-fold), and inositol 2-phosphate (3-20-fold). The increases correlated with the levels of enzyme expression obtained in each cell type. The turnover of phosphatidylinositol (PtdIns) was also increased in transfected CV-1 cells by 13-fold 20 h after transfection. The levels of PtdIns, phosphatidic acid, diacylglycerol, or other inositol phosphates were not detectably altered. Expression of bacterial PtdIns-PLC decreased rapidly after 20 h implying that either the increased PtdIns turnover or the accumulation of inositol phosphates was detrimental to cells and that by some adaptive mechanism enzyme expression was suppressed. 相似文献
12.
Role of phospholipase C in Dictyostelium: formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. 总被引:8,自引:1,他引:8
下载免费PDF全文

The micro-organism Dictyostelium uses extracellular cAMP to induce chemotaxis and cell differentiation. Signals are transduced via surface receptors, which activate G proteins, to effector enzymes. The deduced protein sequence of Dictyostelium discoideum phosphatidylinositol-specific phospholipase C (PLC) shows strong homology with the mammalian PLC-delta isoforms. To study the role of PLC in Dictyostelium, a plc- mutant was constructed by disruption of the PLC gene. No basal or stimulated PLC activity could be measured during the whole developmental programme of the plc- cells. Loss of PLC activity did not result in a visible alteration of growth or development. Further analysis showed that developmental gene regulation, cAMP-mediated chemotaxis and activation of guanylyl and adenylyl cyclase were normal. Although the cells lack PLC activity, inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was present at only slightly lower concentrations compared with control cells. Mass analysis of inositol phosphates demonstrated the presence of a broad spectrum of inositol phosphates in Dictyostelium, which was unaltered in the plc- mutant. Cell labelling experiments with [3H]inositol indicated that [3H]Ins(1,4,5)P3 was formed in a different manner in the mutant than in control cells. 相似文献
13.
Lipopolysaccharide-sensitive serine-protease zymogen (factor C) found in Limulus hemocytes. Isolation and characterization 总被引:5,自引:0,他引:5
Bacterial endotoxin (lipopolysaccharide, LPS) induces coagulation of horseshoe crab hemolymph. Our previous studies had demonstrated that a hemolymph factor, designated factor B, was associated with the LPS-mediated activation of the Limulus clotting system [Ohki et al. (1980) FEBS Lett. 120, 318-321]. On further purification of factor B we found that an additional component, designated factor C, was required to generate factor B activity in the presence of LPS in order to activate the proclotting enzyme. To elucidate the role of factor C in the LPS-mediated reaction, factor C was isolated and characterized from the hemocyte lysate under sterile conditions. The preparation exhibited a single band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the absence of 2-mercaptoethanol, while two protein bands on SDS-PAGE were observed after reduction. Thus, factor C had a Mr of 123 000 consisting of a heavy chain of Mr = 80 000 and a light chain of Mr = 43 000. Factor C was converted to an activated form in the presence of LPS with a Mr = 123 000, designated factor C. Upon activation, cleavage of the light chain occurred resulting in the accumulation of two new fragments of Mr = 34000 and 8500 on reduced SDS-PAGE. A diisopropylfluorophosphate-sensitive active site was localized in the light chain (Mr = 34000) of factor C. The reconstitution experiments, using factor C, factor B, proclotting enzyme and LPS, demonstrated that all of these proteins are essential for the endotoxin-mediated coagulation system. On the basis of these results we propose that a cascade pathway of LPS-induced activation of the Limulus clotting system consists of three sequential activations of hemolymph serine protease zymogens. 相似文献
14.
Production of [3H]1,2-dipalmitoylglycerol ([3H]DAG) from 1-palmitoyl-2-[9,10-3H]palmitoyl-sn-glycero-3-phosphocholine and [3H]phosphorylcholine from 1,2-dipalmitoyl-sn-glycero-3-[Me-3H]phosphocholine was studied using sonicated rat platelets. The formation of [3H]DAG and [3H]phosphorylcholine occurred at a comparable rate. [3H]Phosphorylcholine formation was dependent on the concentration of the substrate, platelet sonicates and calcium in the incubation medium. The [3H]phosphorylcholine formation increased in presence of 0.01% deoxycholate and 0.01% Triton X-100. The phosphatidylcholine-phospholipase C (PC-PLC) in the platelet sonicates was recovered in both the supernatant and particulate fractions obtained after ultracentrifugation at 105,000 x g for 1 h. The PC-PLC activity in both fractions was inhibited by 2 mM EDTA. In the presence of 0.01% deoxycholate and 0.01% Triton X-100 the activity in the particulate fraction increased compared to the activity in the supernatant, which was inhibited by 0.01% Triton X-100. The pH optima for PC-PLC in both fractions was between pH 7.2 and 7.6. PC-PLC activity was also found in rabbit and human platelet sonicates, but the activity was significantly lower than in rat platelet sonicates. There was no evidence to suggest presence of phosphatidylcholine-specific phospholipase D activity in rat sonicated platelets. This data, therefore, provides direct evidence for the presence of PC-PLC activity in rat platelets. 相似文献
15.
Peripheral blood mononuclear cells from normal donors exhibited phosphatidylinositol 4,5-bisphosphate phospholipase C (PIP2-PLC), inositol 1,4,5-trisphosphate (IP3) and inositol 1-phosphate (IP)-monophosphatase activities which were mostly recovered in the cytosol fraction. In both cytosol and particulate fractions PIP2-PLC displayed the highest activity at pH 6.2, whereas IP3 and IP-monophosphatases showed the same optimal pH at 7.0. While the PIP2-PLC displayed close apparent Km values in cytosol and particulate fractions, both inositol-monophosphatases were found to show substrate affinities for IP and IP3 characteristic of these two fractions, with an higher affinity in the soluble fraction. 相似文献
16.
Purification and characterization of membrane-bound phospholipase C specific for phosphoinositides from human platelets 总被引:4,自引:0,他引:4
Two peaks (mPLC-I and mPLC-II) of phosphatidylinositol 4,5-bisphosphate (PIP2)-hydrolyzing activity were resolved when 1% sodium cholate extract from particulate fractions of human platelet was chromatographed on a heparin-Sepharose column. The major peak of enzyme activity (mPLC-II) was purified to homogeneity by a combination of Fast Q-Sepharose, heparin-Sepharose, Ultrogel AcA-44, Mono Q, Superose 6-12 combination column, and Superose 12 column chromatographies. The specific activity increased 2,700-fold as compared with that of the starting particulate fraction. The purified mPLC-II had an estimated molecular weight of 61,000 on sodium dodecyl sulfate-polyacrylamide gels. The minor peak of enzyme activity (mPLC-I) was partially purified to 430-fold. Both enzymes hydrolyzed PIP2 at low Ca2+ concentration (0.1-10 microM) and exhibited higher Vmax for PIP2 than for phosphatidylinositol. PIP2-hydrolyzing activities of both enzymes were enhanced by various detergents and lipids, such as deoxycholate, cholate, phosphatidylethanolamine, and dimyristoylphosphatidylcholine. The mPLC-I and mPLC-II activities were increased by Ca2+, but not by Mg2+, while Hg2+, Fe2+, Cu2+, and La3+ were inhibitory. GTP-binding proteins (Gi, Go, and Ki-ras protein) had no significant effects on the mPLC-II activity. 相似文献
17.
18.
19.
L1210 lymphoma cells were permeabilized with digitonin, and the ability of Ins(2,4,5)P3 and Ins(1,3,4,5)P4 to mobilize intracellular Ca2+ was studied. At high doses of Ins(2,4,5)P3 Ca2+ was rapidly released from intracellular stores, and prior or subsequent addition of Ins(1,3,4,5)P4 had no discernible effect. However, the Ca2(+)-mobilizing action of low (threshold or just above) concentrations of Ins(2,4,5)P3 was markedly enhanced by Ins(1,3,4,5)P4, which alone caused no mobilization of Ca2+; this phenomenon was shown not to be due to protection of Ins(2,4,5)P3 by the Ins(1,3,4,5)P4 against hydrolysis. The ability of the pre-addition of Ins(1,3,4,5)P4 to enhance subsequent Ins(2,4,5)P3-induced Ca2+ mobilization was always seen whether or not the free Ca2+ concentration was low (pCa = 7) or high (pCa = 6). However, at low Ca2+, Ins(1,3,4,5)P4 could cause a further mobilization if added after the Ins(2,4,5)P3, whereas at higher Ca2+ values Ins(1,3,4,5)P4 was only able to affect Ca2+ if added before Ins(2,4,5)P3. These effects of Ins(1,3,4,5)P4 were not, at the same concentration, mimicked by a random mixture of InsP4 isomers obtained by partial acid hydrolysis of phytic acid, by Ins(1,3,4)P3 or by Ins(1,3,4,5,6)P5, and they were shown not to be due to enzymic generation of Ins(1,4,5)P3 from Ins(1,3,4,5)P4 by (a) the absence of any detectable production of Ins(1,4,5)P3 if radiolabelled Ins(1,3,4,5)P4 was used, or (b) the observation that Ins(1,3,4,5,6)P5 could mimic Ins(1,3,4,5)P4 provided that higher doses were used; this inositol phosphate, when added radiolabelled, yielded only trace quantities of D/L-Ins(1,4,5,6)P4, which itself does not mobilize Ca2+. We interpret these results overall to mean that in these cells there is a small proportion of the Ins(2,4,5)P3-mobilizable Ca2+ pools which can only be mobilized in the presence of Ins(1,3,4,5)P4 [or at the least, Ins(1,3,4,5)P4 can help Ins(2,4,5)P3 to gain access to them]. The significance of this conclusion is discussed in the light of current concepts of the second messenger function of Ins(1,3,4,5)P4. 相似文献
20.
Luteinizing hormone stimulates the formation of inositol trisphosphate and cyclic AMP in rat granulosa cells. Evidence for phospholipase C generated second messengers in the action of luteinizing hormone. 总被引:1,自引:1,他引:1
下载免费PDF全文

The following studies were conducted to determine whether luteinizing hormone (LH), a hormone which increases cellular levels of cyclic AMP, also provokes increases in 'second messengers' derived from inositol lipid metabolism (i.e. inositol phosphates and diacylglycerol). Rat granulosa cells isolated from mature Graafian follicles were prelabelled for 3 h with myo-[2-3H]inositol. LH provoked rapid (5 min) and sustained (up to 60 min) increases in the levels of inositol mono-, bis, and trisphosphates (IP, IP2 and IP3, respectively). Time course studies revealed that IP3 was formed more rapidly than IP2 and IP following LH treatment. The response to LH was concentration-dependent with maximal increases at LH concentrations of 1 microgram/ml. LiCl (2-40 mM) enhanced the LH-provoked accumulation of all [3H]inositol phosphates, presumably by inhibiting the action of inositol phosphate phosphatases. The effectiveness of LH, however, was dependent on the concentration of lithium employed; maximal increases in IP were observed at 10 mM-LiCl, whereas maximal increases in IP2 and IP3 were observed at 20 mM- and 40 mM-LiCl, respectively. The stimulatory effects of LH on inositol phosphate and progesterone accumulation were also compared with changes in cyclic nucleotide levels. LH rapidly increased levels of inositol phosphates, progesterone and cyclic AMP, but transiently reduced levels of cyclic GMP. These results demonstrate that LH increases both cyclic AMP and inositol trisphosphate (and presumably diacylglycerol) in rat granulosa cells. Our findings suggest that two messenger systems exist to mediate the action of LH in granulosa cells. 相似文献