首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Salmonella spp. possess a conserved type III secretion system encoded within the pathogenicity island 1 (SPI1; centisome 63), which mediates translocation of effector proteins into the host cell cytosol to trigger responses such as bacterial internalization. Several translocated effector proteins are encoded in other regions of the Salmonella chromosome. It remains unclear how this complex chromosomal arrangement of genes for the type III apparatus and the effector proteins emerged and how the different effector proteins cooperate to mediate virulence. By Southern blotting, PCR, and phylogenetic analyses of highly diverse Salmonella spp., we show here that effector protein genes located in the core of SPI1 are present in all Salmonella lineages. Surprisingly, the same holds true for several effector protein genes located in distant regions of the Salmonella chromosome, namely, sopB (SPI5, centisome 20), sopD (centisome 64), and sopE2 (centisomes 40 to 42). Our data demonstrate that sopB, sopD, and sopE2, along with SPI1, were already present in the last common ancestor of all contemporary Salmonella spp. Analysis of Salmonella mutants revealed that host cell invasion is mediated by SopB, SopE2, and, in the case of Salmonella enterica serovar Typhimurium SL1344, by SopE: a sopB sopE sopE2-deficient triple mutant was incapable of inducing membrane ruffling and was >100-fold attenuated in host cell invasion. We conclude that host cell invasion emerged early during evolution by acquisition of a mosaic of genetic elements (SPI1 itself, SPI5 [sopB], and sopE2) and that the last common ancestor of all contemporary Salmonella spp. was probably already invasive.  相似文献   

3.
Two large virulence loci encoding type III secretion systems are present on the chromosome of Salmonella typhimurium. Salmonella pathogenicity island 2 (SPI2) is important for the survival of S. typhimurium in host organs and forms an insertion of about 40 kb at the tRNA(Val) gene. However, several indications suggested that SPI2 was not the result of a single event of horizontal gene transfer. We characterized the portion of SPI2 towards the 30 cs boundary and performed mutational analysis to investigate the contribution of this region to S. enterica virulence. This analysis indicates that SPI2 may be composed of at least two different genetic elements. About 15 kb of the 40 kb of SPI2 contain genes without a significant contribution to systemic infections in the model of murine salmonellosis. Our study allowed us to define genes in SPI2 important for virulence further and indicated that this locus has a complex mosaic structure.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Salmonella typhimurium invades host macrophages and can either induce a rapid cell death or establish an intracellular niche within the phagocytic vacuole. Rapid cell death requires the Salmonella pathogenicity island (SPI)1 and the host protein caspase-1, a member of the pro-apoptotic caspase family of proteases. Salmonella that do not cause this rapid cell death and instead reside in the phagocytic vacuole can trigger macrophage death at a later time point. We show here that the human pathogen Salmonella typhi also triggers both rapid, caspase-1-dependent and delayed cell death in human monocytes. The delayed cell death has previously been shown with S. typhimurium to be dependent on SPI2-encoded genes and ompR . Using caspase-1 –/– bone marrow-derived macrophages and isogenic S. typhimurium mutant strains, we show that a large portion of the delayed, SPI2-dependent death is mediated by caspase-1. The two known substrates of activated caspase-1 are the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18, which are cleaved to produce bioactive cytokines. We show here that IL-1β is released during both SPI1- and SPI2-dependent macrophage killing. Using IL-1β –/– bone marrow-derived macrophages and a neutralizing anti-IL-18 antibody, we show that neither IL-1β nor IL-18 is required for rapid or delayed macrophage death. Thus, both rapid, SPI1-mediated killing and delayed, SPI2-mediated killing require caspase-1 and result in the secretion of IL-1β, which promotes inflammation and may facilitate the spread of Salmonella beyond the gastrointestinal tract in systemic disease.  相似文献   

20.
The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI 2) is important for intracellular proliferation in infected host cells. Intracellular Salmonella use this system to translocate a set of effector proteins into the host cell. We studied the role of SseF and SseG, two SPI 2-encoded proteins. SseF and SseG are not required for translocation of effector proteins such as SseJ, encoded by genes outside of SPI 2. Rather, both proteins are translocated and interact with phagosomal membranes after translocation. In infected epithelial cells the formation of Salmonella-induced filaments, endosomal aggregates rich in lysosomal glycoproteins, is dependent on the function of SPI 2. We observed that, in mutant strains deficient for sseF or sseG, the formation of aggregated endosomes can take place, but the composition of the structures is different from those observed in cells infected with Salmonella wild type. These observations indicate that SseF and SseG modulate the aggregation of host endosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号